Loading…

Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers

This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2022-02, Vol.60 (2), p.860-871
Main Authors: Grande, Edoardo, Romani, Gianluca, Ragni, Daniele, Avallone, Francesco, Casalino, Damiano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33
cites cdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33
container_end_page 871
container_issue 2
container_start_page 860
container_title AIAA journal
container_volume 60
creator Grande, Edoardo
Romani, Gianluca
Ragni, Daniele
Avallone, Francesco
Casalino, Damiano
description This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.
doi_str_mv 10.2514/1.J060611
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J060611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626952324</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</originalsourceid><addsrcrecordid>eNplkM1Lw0AQxRdRsFYP_gcLguAhdWe_khyL-FEtVkTBW5hsdktKmo27jdL_3kgLHjzNDPPjvccj5BzYhCuQ1zB5ZJppgAMyAiVEIjL1cUhGjDFIQCp-TE5iXA0XTzMYkaepDR6N7-OmNnTWftlhWeKm9i31jiJ9Cb6zTWMDXXQ2DI92SXFD5_6bvtpt65sq0ud-XdoQT8mRwybas_0ck_e727ebh2S-uJ_dTOcJcpFBkhllVGakkVUuVeowFWnFtFMOmGHMIjomS8nKMkeOSkBVyRy0Exx1xawQY3Kx0-2C_-yHwMXK96EdLAuuuc4VF1wO1NWOMsHHGKwrulCvMWwLYMVvVwUU-64G9nLHYo34p_Yf_AFwc2ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626952324</pqid></control><display><type>article</type><title>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</title><source>Alma/SFX Local Collection</source><creator>Grande, Edoardo ; Romani, Gianluca ; Ragni, Daniele ; Avallone, Francesco ; Casalino, Damiano</creator><creatorcontrib>Grande, Edoardo ; Romani, Gianluca ; Ragni, Daniele ; Avallone, Francesco ; Casalino, Damiano</creatorcontrib><description>This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060611</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic forces ; Flow distribution ; Fluid flow ; Noise ; Noise generation ; Noise spectra ; Particle image velocimetry ; Reynolds number ; Separation ; Suction ; Vortex shedding ; Wind tunnels</subject><ispartof>AIAA journal, 2022-02, Vol.60 (2), p.860-871</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</citedby><cites>FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</cites><orcidid>0000-0002-6214-5200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grande, Edoardo</creatorcontrib><creatorcontrib>Romani, Gianluca</creatorcontrib><creatorcontrib>Ragni, Daniele</creatorcontrib><creatorcontrib>Avallone, Francesco</creatorcontrib><creatorcontrib>Casalino, Damiano</creatorcontrib><title>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</title><title>AIAA journal</title><description>This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.</description><subject>Aerodynamic forces</subject><subject>Flow distribution</subject><subject>Fluid flow</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Noise spectra</subject><subject>Particle image velocimetry</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Suction</subject><subject>Vortex shedding</subject><subject>Wind tunnels</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkM1Lw0AQxRdRsFYP_gcLguAhdWe_khyL-FEtVkTBW5hsdktKmo27jdL_3kgLHjzNDPPjvccj5BzYhCuQ1zB5ZJppgAMyAiVEIjL1cUhGjDFIQCp-TE5iXA0XTzMYkaepDR6N7-OmNnTWftlhWeKm9i31jiJ9Cb6zTWMDXXQ2DI92SXFD5_6bvtpt65sq0ud-XdoQT8mRwybas_0ck_e727ebh2S-uJ_dTOcJcpFBkhllVGakkVUuVeowFWnFtFMOmGHMIjomS8nKMkeOSkBVyRy0Exx1xawQY3Kx0-2C_-yHwMXK96EdLAuuuc4VF1wO1NWOMsHHGKwrulCvMWwLYMVvVwUU-64G9nLHYo34p_Yf_AFwc2ag</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Grande, Edoardo</creator><creator>Romani, Gianluca</creator><creator>Ragni, Daniele</creator><creator>Avallone, Francesco</creator><creator>Casalino, Damiano</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6214-5200</orcidid></search><sort><creationdate>202202</creationdate><title>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</title><author>Grande, Edoardo ; Romani, Gianluca ; Ragni, Daniele ; Avallone, Francesco ; Casalino, Damiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamic forces</topic><topic>Flow distribution</topic><topic>Fluid flow</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Noise spectra</topic><topic>Particle image velocimetry</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Suction</topic><topic>Vortex shedding</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grande, Edoardo</creatorcontrib><creatorcontrib>Romani, Gianluca</creatorcontrib><creatorcontrib>Ragni, Daniele</creatorcontrib><creatorcontrib>Avallone, Francesco</creatorcontrib><creatorcontrib>Casalino, Damiano</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grande, Edoardo</au><au>Romani, Gianluca</au><au>Ragni, Daniele</au><au>Avallone, Francesco</au><au>Casalino, Damiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</atitle><jtitle>AIAA journal</jtitle><date>2022-02</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>860</spage><epage>871</epage><pages>860-871</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060611</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6214-5200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2022-02, Vol.60 (2), p.860-871
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J060611
source Alma/SFX Local Collection
subjects Aerodynamic forces
Flow distribution
Fluid flow
Noise
Noise generation
Noise spectra
Particle image velocimetry
Reynolds number
Separation
Suction
Vortex shedding
Wind tunnels
title Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aeroacoustic%20Investigation%20of%20a%20Propeller%20Operating%20at%20Low%20Reynolds%20Numbers&rft.jtitle=AIAA%20journal&rft.au=Grande,%20Edoardo&rft.date=2022-02&rft.volume=60&rft.issue=2&rft.spage=860&rft.epage=871&rft.pages=860-871&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060611&rft_dat=%3Cproquest_cross%3E2626952324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626952324&rft_id=info:pmid/&rfr_iscdi=true