Loading…
Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers
This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested...
Saved in:
Published in: | AIAA journal 2022-02, Vol.60 (2), p.860-871 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33 |
---|---|
cites | cdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33 |
container_end_page | 871 |
container_issue | 2 |
container_start_page | 860 |
container_title | AIAA journal |
container_volume | 60 |
creator | Grande, Edoardo Romani, Gianluca Ragni, Daniele Avallone, Francesco Casalino, Damiano |
description | This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra. |
doi_str_mv | 10.2514/1.J060611 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J060611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626952324</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</originalsourceid><addsrcrecordid>eNplkM1Lw0AQxRdRsFYP_gcLguAhdWe_khyL-FEtVkTBW5hsdktKmo27jdL_3kgLHjzNDPPjvccj5BzYhCuQ1zB5ZJppgAMyAiVEIjL1cUhGjDFIQCp-TE5iXA0XTzMYkaepDR6N7-OmNnTWftlhWeKm9i31jiJ9Cb6zTWMDXXQ2DI92SXFD5_6bvtpt65sq0ud-XdoQT8mRwybas_0ck_e727ebh2S-uJ_dTOcJcpFBkhllVGakkVUuVeowFWnFtFMOmGHMIjomS8nKMkeOSkBVyRy0Exx1xawQY3Kx0-2C_-yHwMXK96EdLAuuuc4VF1wO1NWOMsHHGKwrulCvMWwLYMVvVwUU-64G9nLHYo34p_Yf_AFwc2ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626952324</pqid></control><display><type>article</type><title>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</title><source>Alma/SFX Local Collection</source><creator>Grande, Edoardo ; Romani, Gianluca ; Ragni, Daniele ; Avallone, Francesco ; Casalino, Damiano</creator><creatorcontrib>Grande, Edoardo ; Romani, Gianluca ; Ragni, Daniele ; Avallone, Francesco ; Casalino, Damiano</creatorcontrib><description>This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060611</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic forces ; Flow distribution ; Fluid flow ; Noise ; Noise generation ; Noise spectra ; Particle image velocimetry ; Reynolds number ; Separation ; Suction ; Vortex shedding ; Wind tunnels</subject><ispartof>AIAA journal, 2022-02, Vol.60 (2), p.860-871</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</citedby><cites>FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</cites><orcidid>0000-0002-6214-5200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grande, Edoardo</creatorcontrib><creatorcontrib>Romani, Gianluca</creatorcontrib><creatorcontrib>Ragni, Daniele</creatorcontrib><creatorcontrib>Avallone, Francesco</creatorcontrib><creatorcontrib>Casalino, Damiano</creatorcontrib><title>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</title><title>AIAA journal</title><description>This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.</description><subject>Aerodynamic forces</subject><subject>Flow distribution</subject><subject>Fluid flow</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Noise spectra</subject><subject>Particle image velocimetry</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Suction</subject><subject>Vortex shedding</subject><subject>Wind tunnels</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkM1Lw0AQxRdRsFYP_gcLguAhdWe_khyL-FEtVkTBW5hsdktKmo27jdL_3kgLHjzNDPPjvccj5BzYhCuQ1zB5ZJppgAMyAiVEIjL1cUhGjDFIQCp-TE5iXA0XTzMYkaepDR6N7-OmNnTWftlhWeKm9i31jiJ9Cb6zTWMDXXQ2DI92SXFD5_6bvtpt65sq0ud-XdoQT8mRwybas_0ck_e727ebh2S-uJ_dTOcJcpFBkhllVGakkVUuVeowFWnFtFMOmGHMIjomS8nKMkeOSkBVyRy0Exx1xawQY3Kx0-2C_-yHwMXK96EdLAuuuc4VF1wO1NWOMsHHGKwrulCvMWwLYMVvVwUU-64G9nLHYo34p_Yf_AFwc2ag</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Grande, Edoardo</creator><creator>Romani, Gianluca</creator><creator>Ragni, Daniele</creator><creator>Avallone, Francesco</creator><creator>Casalino, Damiano</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6214-5200</orcidid></search><sort><creationdate>202202</creationdate><title>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</title><author>Grande, Edoardo ; Romani, Gianluca ; Ragni, Daniele ; Avallone, Francesco ; Casalino, Damiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerodynamic forces</topic><topic>Flow distribution</topic><topic>Fluid flow</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Noise spectra</topic><topic>Particle image velocimetry</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Suction</topic><topic>Vortex shedding</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grande, Edoardo</creatorcontrib><creatorcontrib>Romani, Gianluca</creatorcontrib><creatorcontrib>Ragni, Daniele</creatorcontrib><creatorcontrib>Avallone, Francesco</creatorcontrib><creatorcontrib>Casalino, Damiano</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grande, Edoardo</au><au>Romani, Gianluca</au><au>Ragni, Daniele</au><au>Avallone, Francesco</au><au>Casalino, Damiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers</atitle><jtitle>AIAA journal</jtitle><date>2022-02</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>860</spage><epage>871</epage><pages>860-871</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper presents an experimental investigation of a propeller operating at low Reynolds numbers and provides insights into the role of aerodynamic flow features on both propeller performances and noise generation. A propeller operating at a tip Reynolds number regime of 4.3×104−4.38×104 is tested in an anechoic wind tunnel at an advance ratio ranging from 0 to 0.6. Noise is measured by means of a microphone array, while aerodynamic forces are measured with load and torque cells. Oil-flow visualizations are used to show the flow patterns on the blade surface, whereas phase-locked stereoscopic particle image velocimetry (PIV) measurements are carried out to analyze the flow at 60% of the blade radius. The pressure field around the blade section has been computed from the PIV velocity data. Results reveal a complex flowfield with the appearance of a laminar separation bubble at the suction side of the blade. The separation bubble moves toward the leading edge and reduces in size as the advance ratio decreases. At an advance ratio equal to 0.6, the flowfield is characterized by a laminar separation without reattachment. This causes vortex shedding responsible for a high-frequency hump in the far-field noise spectra.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060611</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6214-5200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2022-02, Vol.60 (2), p.860-871 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_J060611 |
source | Alma/SFX Local Collection |
subjects | Aerodynamic forces Flow distribution Fluid flow Noise Noise generation Noise spectra Particle image velocimetry Reynolds number Separation Suction Vortex shedding Wind tunnels |
title | Aeroacoustic Investigation of a Propeller Operating at Low Reynolds Numbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aeroacoustic%20Investigation%20of%20a%20Propeller%20Operating%20at%20Low%20Reynolds%20Numbers&rft.jtitle=AIAA%20journal&rft.au=Grande,%20Edoardo&rft.date=2022-02&rft.volume=60&rft.issue=2&rft.spage=860&rft.epage=871&rft.pages=860-871&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060611&rft_dat=%3Cproquest_cross%3E2626952324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2381-8c5c58c4c4d9457fa737d06f5f10c00eaaf04b40bb9a2a531dd4916f32a6d0e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2626952324&rft_id=info:pmid/&rfr_iscdi=true |