Loading…

Master Equation Analysis of Post Normal Shock Waves of Nitrogen

One-dimensional post normal shock flow calculations are carried out using state-of-the-art thermochemical nonequilibrium models. Two-temperature, four-temperature, and electronic master equation coupling models are adopted in the present work. In the four-temperature model, the rotational nonequilib...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermophysics and heat transfer 2015-04, Vol.29 (2), p.241-252
Main Authors: Kim, Jae Gang, Boyd, Iain D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One-dimensional post normal shock flow calculations are carried out using state-of-the-art thermochemical nonequilibrium models. Two-temperature, four-temperature, and electronic master equation coupling models are adopted in the present work. In the four-temperature model, the rotational nonequilibrium is described by Parker and modified Park models. In the electronic master equation coupling model, recently evaluated electron and heavy-particle impacts and radiative transition cross-sections are employed in constructing the system of electronic master equations. In analyzing the shock-tube experiments, the results calculated by the state-of-the-art thermochemical nonequilibrium models are compared with existing shock-tube experimental data. The four-temperature and electronic master equation coupling models with rotational nonequilibrium described by the modified Park model approximately reproduce the measured rotational, vibrational, and electronic temperatures.
ISSN:0887-8722
1533-6808
DOI:10.2514/1.T4249