Loading…

Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations

In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermophysics and heat transfer 2022-10, Vol.36 (4), p.824-835
Main Authors: Bhesania, Abhishek S., Kammara, Kishore K., Kumar, Rakesh, Arghode, Vaibhav K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3
cites cdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3
container_end_page 835
container_issue 4
container_start_page 824
container_title Journal of thermophysics and heat transfer
container_volume 36
creator Bhesania, Abhishek S.
Kammara, Kishore K.
Kumar, Rakesh
Arghode, Vaibhav K.
description In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.
doi_str_mv 10.2514/1.T6463
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_T6463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723577797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</originalsourceid><addsrcrecordid>eNpd0NtKw0AQBuBFFKxVfIUFBa9Ss6dscllqPUBLBdvrMG4mdUuSrbuJ2Lc3tYLi1QzDxz_wE3LJ4hFXTN6y0TKRiTgiA6aEiJI0To__7KfkLIRNHLMk1WxAzPSz9WBa6xrqSrp8Q19DRZ-926JvLYb9deHX0FhDx68VtPYD6Rxa9BaqQFfBNms6dxWargJP73YN1NYE-mLrbq9dE87JSdlbvPiZQ7K6ny4nj9Fs8fA0Gc8i4Clvo0KZIlFKpaqQiqUSeH8XmECsC4wFVxx0VihdItcZK0DJjGspCxQGMw0ohuTqkLv17r3D0OYb1_mmf5lzzYXSWme6VzcHZbwLwWOZb72twe9yFuf7BnOWfzfYy-uDBAvwm_WffQERC25v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723577797</pqid></control><display><type>article</type><title>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</title><source>Alma/SFX Local Collection</source><creator>Bhesania, Abhishek S. ; Kammara, Kishore K. ; Kumar, Rakesh ; Arghode, Vaibhav K.</creator><creatorcontrib>Bhesania, Abhishek S. ; Kammara, Kishore K. ; Kumar, Rakesh ; Arghode, Vaibhav K.</creatorcontrib><description>In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.</description><identifier>ISSN: 1533-6808</identifier><identifier>ISSN: 0887-8722</identifier><identifier>EISSN: 1533-6808</identifier><identifier>DOI: 10.2514/1.T6463</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Ablative materials ; Benzene ; Composite materials ; Conduction heating ; Conductive heat transfer ; Crosslinking ; Enthalpy ; Finite element method ; Heat conductivity ; Material properties ; Molecular dynamics ; Polymers ; Pyrolysis ; Simulation ; Specific heat ; Thermal conductivity ; Thermal protection ; Thermal response ; Thermodynamic properties ; Toluene</subject><ispartof>Journal of thermophysics and heat transfer, 2022-10, Vol.36 (4), p.824-835</ispartof><rights>Copyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-6808 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</citedby><cites>FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</cites><orcidid>0000-0002-9517-8658 ; 0000-0002-2705-8785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bhesania, Abhishek S.</creatorcontrib><creatorcontrib>Kammara, Kishore K.</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Arghode, Vaibhav K.</creatorcontrib><title>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</title><title>Journal of thermophysics and heat transfer</title><description>In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.</description><subject>Ablative materials</subject><subject>Benzene</subject><subject>Composite materials</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Crosslinking</subject><subject>Enthalpy</subject><subject>Finite element method</subject><subject>Heat conductivity</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Simulation</subject><subject>Specific heat</subject><subject>Thermal conductivity</subject><subject>Thermal protection</subject><subject>Thermal response</subject><subject>Thermodynamic properties</subject><subject>Toluene</subject><issn>1533-6808</issn><issn>0887-8722</issn><issn>1533-6808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0NtKw0AQBuBFFKxVfIUFBa9Ss6dscllqPUBLBdvrMG4mdUuSrbuJ2Lc3tYLi1QzDxz_wE3LJ4hFXTN6y0TKRiTgiA6aEiJI0To__7KfkLIRNHLMk1WxAzPSz9WBa6xrqSrp8Q19DRZ-926JvLYb9deHX0FhDx68VtPYD6Rxa9BaqQFfBNms6dxWargJP73YN1NYE-mLrbq9dE87JSdlbvPiZQ7K6ny4nj9Fs8fA0Gc8i4Clvo0KZIlFKpaqQiqUSeH8XmECsC4wFVxx0VihdItcZK0DJjGspCxQGMw0ohuTqkLv17r3D0OYb1_mmf5lzzYXSWme6VzcHZbwLwWOZb72twe9yFuf7BnOWfzfYy-uDBAvwm_WffQERC25v</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Bhesania, Abhishek S.</creator><creator>Kammara, Kishore K.</creator><creator>Kumar, Rakesh</creator><creator>Arghode, Vaibhav K.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9517-8658</orcidid><orcidid>https://orcid.org/0000-0002-2705-8785</orcidid></search><sort><creationdate>202210</creationdate><title>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</title><author>Bhesania, Abhishek S. ; Kammara, Kishore K. ; Kumar, Rakesh ; Arghode, Vaibhav K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablative materials</topic><topic>Benzene</topic><topic>Composite materials</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Crosslinking</topic><topic>Enthalpy</topic><topic>Finite element method</topic><topic>Heat conductivity</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Simulation</topic><topic>Specific heat</topic><topic>Thermal conductivity</topic><topic>Thermal protection</topic><topic>Thermal response</topic><topic>Thermodynamic properties</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhesania, Abhishek S.</creatorcontrib><creatorcontrib>Kammara, Kishore K.</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Arghode, Vaibhav K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermophysics and heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhesania, Abhishek S.</au><au>Kammara, Kishore K.</au><au>Kumar, Rakesh</au><au>Arghode, Vaibhav K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</atitle><jtitle>Journal of thermophysics and heat transfer</jtitle><date>2022-10</date><risdate>2022</risdate><volume>36</volume><issue>4</issue><spage>824</spage><epage>835</epage><pages>824-835</pages><issn>1533-6808</issn><issn>0887-8722</issn><eissn>1533-6808</eissn><abstract>In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.T6463</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9517-8658</orcidid><orcidid>https://orcid.org/0000-0002-2705-8785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1533-6808
ispartof Journal of thermophysics and heat transfer, 2022-10, Vol.36 (4), p.824-835
issn 1533-6808
0887-8722
1533-6808
language eng
recordid cdi_crossref_primary_10_2514_1_T6463
source Alma/SFX Local Collection
subjects Ablative materials
Benzene
Composite materials
Conduction heating
Conductive heat transfer
Crosslinking
Enthalpy
Finite element method
Heat conductivity
Material properties
Molecular dynamics
Polymers
Pyrolysis
Simulation
Specific heat
Thermal conductivity
Thermal protection
Thermal response
Thermodynamic properties
Toluene
title Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20Thermal%20Properties%20of%20Organic%20Ablative%20Materials%20Using%20Molecular%20Dynamics%20Simulations&rft.jtitle=Journal%20of%20thermophysics%20and%20heat%20transfer&rft.au=Bhesania,%20Abhishek%20S.&rft.date=2022-10&rft.volume=36&rft.issue=4&rft.spage=824&rft.epage=835&rft.pages=824-835&rft.issn=1533-6808&rft.eissn=1533-6808&rft_id=info:doi/10.2514/1.T6463&rft_dat=%3Cproquest_cross%3E2723577797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723577797&rft_id=info:pmid/&rfr_iscdi=true