Loading…
Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations
In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin...
Saved in:
Published in: | Journal of thermophysics and heat transfer 2022-10, Vol.36 (4), p.824-835 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3 |
container_end_page | 835 |
container_issue | 4 |
container_start_page | 824 |
container_title | Journal of thermophysics and heat transfer |
container_volume | 36 |
creator | Bhesania, Abhishek S. Kammara, Kishore K. Kumar, Rakesh Arghode, Vaibhav K. |
description | In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver. |
doi_str_mv | 10.2514/1.T6463 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_T6463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723577797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</originalsourceid><addsrcrecordid>eNpd0NtKw0AQBuBFFKxVfIUFBa9Ss6dscllqPUBLBdvrMG4mdUuSrbuJ2Lc3tYLi1QzDxz_wE3LJ4hFXTN6y0TKRiTgiA6aEiJI0To__7KfkLIRNHLMk1WxAzPSz9WBa6xrqSrp8Q19DRZ-926JvLYb9deHX0FhDx68VtPYD6Rxa9BaqQFfBNms6dxWargJP73YN1NYE-mLrbq9dE87JSdlbvPiZQ7K6ny4nj9Fs8fA0Gc8i4Clvo0KZIlFKpaqQiqUSeH8XmECsC4wFVxx0VihdItcZK0DJjGspCxQGMw0ohuTqkLv17r3D0OYb1_mmf5lzzYXSWme6VzcHZbwLwWOZb72twe9yFuf7BnOWfzfYy-uDBAvwm_WffQERC25v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723577797</pqid></control><display><type>article</type><title>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</title><source>Alma/SFX Local Collection</source><creator>Bhesania, Abhishek S. ; Kammara, Kishore K. ; Kumar, Rakesh ; Arghode, Vaibhav K.</creator><creatorcontrib>Bhesania, Abhishek S. ; Kammara, Kishore K. ; Kumar, Rakesh ; Arghode, Vaibhav K.</creatorcontrib><description>In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.</description><identifier>ISSN: 1533-6808</identifier><identifier>ISSN: 0887-8722</identifier><identifier>EISSN: 1533-6808</identifier><identifier>DOI: 10.2514/1.T6463</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Ablative materials ; Benzene ; Composite materials ; Conduction heating ; Conductive heat transfer ; Crosslinking ; Enthalpy ; Finite element method ; Heat conductivity ; Material properties ; Molecular dynamics ; Polymers ; Pyrolysis ; Simulation ; Specific heat ; Thermal conductivity ; Thermal protection ; Thermal response ; Thermodynamic properties ; Toluene</subject><ispartof>Journal of thermophysics and heat transfer, 2022-10, Vol.36 (4), p.824-835</ispartof><rights>Copyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-6808 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</citedby><cites>FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</cites><orcidid>0000-0002-9517-8658 ; 0000-0002-2705-8785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bhesania, Abhishek S.</creatorcontrib><creatorcontrib>Kammara, Kishore K.</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Arghode, Vaibhav K.</creatorcontrib><title>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</title><title>Journal of thermophysics and heat transfer</title><description>In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.</description><subject>Ablative materials</subject><subject>Benzene</subject><subject>Composite materials</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Crosslinking</subject><subject>Enthalpy</subject><subject>Finite element method</subject><subject>Heat conductivity</subject><subject>Material properties</subject><subject>Molecular dynamics</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Simulation</subject><subject>Specific heat</subject><subject>Thermal conductivity</subject><subject>Thermal protection</subject><subject>Thermal response</subject><subject>Thermodynamic properties</subject><subject>Toluene</subject><issn>1533-6808</issn><issn>0887-8722</issn><issn>1533-6808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0NtKw0AQBuBFFKxVfIUFBa9Ss6dscllqPUBLBdvrMG4mdUuSrbuJ2Lc3tYLi1QzDxz_wE3LJ4hFXTN6y0TKRiTgiA6aEiJI0To__7KfkLIRNHLMk1WxAzPSz9WBa6xrqSrp8Q19DRZ-926JvLYb9deHX0FhDx68VtPYD6Rxa9BaqQFfBNms6dxWargJP73YN1NYE-mLrbq9dE87JSdlbvPiZQ7K6ny4nj9Fs8fA0Gc8i4Clvo0KZIlFKpaqQiqUSeH8XmECsC4wFVxx0VihdItcZK0DJjGspCxQGMw0ohuTqkLv17r3D0OYb1_mmf5lzzYXSWme6VzcHZbwLwWOZb72twe9yFuf7BnOWfzfYy-uDBAvwm_WffQERC25v</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Bhesania, Abhishek S.</creator><creator>Kammara, Kishore K.</creator><creator>Kumar, Rakesh</creator><creator>Arghode, Vaibhav K.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9517-8658</orcidid><orcidid>https://orcid.org/0000-0002-2705-8785</orcidid></search><sort><creationdate>202210</creationdate><title>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</title><author>Bhesania, Abhishek S. ; Kammara, Kishore K. ; Kumar, Rakesh ; Arghode, Vaibhav K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablative materials</topic><topic>Benzene</topic><topic>Composite materials</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Crosslinking</topic><topic>Enthalpy</topic><topic>Finite element method</topic><topic>Heat conductivity</topic><topic>Material properties</topic><topic>Molecular dynamics</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Simulation</topic><topic>Specific heat</topic><topic>Thermal conductivity</topic><topic>Thermal protection</topic><topic>Thermal response</topic><topic>Thermodynamic properties</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhesania, Abhishek S.</creatorcontrib><creatorcontrib>Kammara, Kishore K.</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><creatorcontrib>Arghode, Vaibhav K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermophysics and heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhesania, Abhishek S.</au><au>Kammara, Kishore K.</au><au>Kumar, Rakesh</au><au>Arghode, Vaibhav K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations</atitle><jtitle>Journal of thermophysics and heat transfer</jtitle><date>2022-10</date><risdate>2022</risdate><volume>36</volume><issue>4</issue><spage>824</spage><epage>835</epage><pages>824-835</pages><issn>1533-6808</issn><issn>0887-8722</issn><eissn>1533-6808</eissn><abstract>In this study, molecular dynamics method is used for extracting thermal properties of materials relevant to the ablative type of thermal protection system. The methodology and results are discussed for extracting thermal conductivity and specific heat capacity of ablative materials for their virgin and char states in a manner that is defined in the experimental data sets. To select a suitable nonreactive force field, Green–Kubo simulations are performed over phenol, toluene, and benzene materials using Amber, Dreiding, and all-atom optimized potentials for liquid simulations (OPLSAA) force fields. Next, crosslinked and non-crosslinked polymers are created, and pyrolysis simulations are performed over them using ReaxFF to obtain virgin and char states of the polymers. Thermal conductivity is extracted using the Green–Kubo method, whereas specific heat capacity is extracted by using the enthalpy gradient obtained by performing isobaric simulations over virgin and char materials. Later, by introducing the concept of an artificial composite material, the extracted thermal properties are used in macroscale one-dimensional heat conduction simulations with pyrolysis using an in-house finite element method (FEM)-based thermal response solver.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.T6463</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9517-8658</orcidid><orcidid>https://orcid.org/0000-0002-2705-8785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1533-6808 |
ispartof | Journal of thermophysics and heat transfer, 2022-10, Vol.36 (4), p.824-835 |
issn | 1533-6808 0887-8722 1533-6808 |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_T6463 |
source | Alma/SFX Local Collection |
subjects | Ablative materials Benzene Composite materials Conduction heating Conductive heat transfer Crosslinking Enthalpy Finite element method Heat conductivity Material properties Molecular dynamics Polymers Pyrolysis Simulation Specific heat Thermal conductivity Thermal protection Thermal response Thermodynamic properties Toluene |
title | Extraction of Thermal Properties of Organic Ablative Materials Using Molecular Dynamics Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20Thermal%20Properties%20of%20Organic%20Ablative%20Materials%20Using%20Molecular%20Dynamics%20Simulations&rft.jtitle=Journal%20of%20thermophysics%20and%20heat%20transfer&rft.au=Bhesania,%20Abhishek%20S.&rft.date=2022-10&rft.volume=36&rft.issue=4&rft.spage=824&rft.epage=835&rft.pages=824-835&rft.issn=1533-6808&rft.eissn=1533-6808&rft_id=info:doi/10.2514/1.T6463&rft_dat=%3Cproquest_cross%3E2723577797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a282t-d5cd655585d45184a2a283e6a07de03252a79d57fe2791da5492744de3ce97ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723577797&rft_id=info:pmid/&rfr_iscdi=true |