Loading…
Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring
The main results of this paper are : \\If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a partformed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicativelyclosed subset of $A$generated by $S_{H}$, then: \begin{enumerate}\...
Saved in:
Published in: | European journal of pure and applied mathematics 2023-07, Vol.16 (3), p.1913-1939 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1939 |
container_issue | 3 |
container_start_page | 1913 |
container_title | European journal of pure and applied mathematics |
container_volume | 16 |
creator | Ould Chbih, Ahmed Ben Maaouia, Mohamed Ben Faraj Sanghare, Mamadou |
description | The main results of this paper are : \\If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a partformed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicativelyclosed subset of $A$generated by $S_{H}$, then:
\begin{enumerate}\item The relation $C_{H}(-) :G_{r}(\overline{S}_{H}^{-1}A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$\overline{S}_{H}^{-1}A-$module $\overline{S}_{H}^{-1}M$ of $G_{r}(\overline{S}_{H}^{-1}A-Mod)$we correspond the associate complex sequence $(\overline{S}_{H}^{-1}M)_{*}$ to a graded $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}M$ and for all graded morphism of graded left $\overline{S}_{H}^{-1}A-$modules$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$ of degree $k$we correspond the associated complex chain$(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$is an additively exact covariant functor.\item The relation $(C_{H}\circ\overline{S}_{H}^{-1})(-) :G_{r}(A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$A-$module $M$ of $G_{r}(A-Mod)$we correspond the associate complex sequence $(C_{H}\circ\overline{S}_{H}^{-1})(M)=(\overline{S}_{H}^{-1}M)_{*}$ to a graded $A-$module$M$ and for all graded morphism of graded left $A-$modules$f : M\longrightarrow N$ of degree $k$we correspond the associated complex chain$(C_{H}\circ\overline{S}_{H}^{-1})(f)=(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $A-$module$f : M\longrightarrow N$is an additively exact covariant functor.
\item \noindent For all $n\in \mathbb{Z}$ fixed and for all $ M \in G_{r}(A-Mod)$ we have:$$\overline{S}^{-1}_{H}((H_{n}\circ C)(M))\cong H_{n}(C_{H}\circ \overline{S}^{-1}_{H})(M)).$$\end{enumerate} |
doi_str_mv | 10.29020/nybg.ejpam.v16i3.4753 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_29020_nybg_ejpam_v16i3_4753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_29020_nybg_ejpam_v16i3_4753</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_29020_nybg_ejpam_v16i3_47533</originalsourceid><addsrcrecordid>eNqdkEFLwzAYhoM4cOj-wvgOPWyH1qRZOz2OovPgUGT3kLVpzUj7lSQOq-xf-IPdisLw6Ol94X2fy0PImNEovqUxvW66TRWpbSvraMdSzaPZPOFnZMg4nYdJMuPnJ_2CjJzbUkpjdkN5yobk6xFzafSH9Bob0A34VwWZ9KpC20GQPa2eJ0vxafeTRbjCYjoNAEvIsG6NegfpHOb68C7A4x_0lOqhpZXF4WhU6SFYhEGNxZtRDnCnLMjf-UU31RUZlNI4NfrJS5Le362zhzC36JxVpWitrqXtBKOi1yCOGkSvQfQaxFED_zf4DXKda1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Ould Chbih, Ahmed ; Ben Maaouia, Mohamed Ben Faraj ; Sanghare, Mamadou</creator><creatorcontrib>Ould Chbih, Ahmed ; Ben Maaouia, Mohamed Ben Faraj ; Sanghare, Mamadou</creatorcontrib><description>The main results of this paper are : \\If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a partformed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicativelyclosed subset of $A$generated by $S_{H}$, then:
\begin{enumerate}\item The relation $C_{H}(-) :G_{r}(\overline{S}_{H}^{-1}A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$\overline{S}_{H}^{-1}A-$module $\overline{S}_{H}^{-1}M$ of $G_{r}(\overline{S}_{H}^{-1}A-Mod)$we correspond the associate complex sequence $(\overline{S}_{H}^{-1}M)_{*}$ to a graded $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}M$ and for all graded morphism of graded left $\overline{S}_{H}^{-1}A-$modules$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$ of degree $k$we correspond the associated complex chain$(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$is an additively exact covariant functor.\item The relation $(C_{H}\circ\overline{S}_{H}^{-1})(-) :G_{r}(A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$A-$module $M$ of $G_{r}(A-Mod)$we correspond the associate complex sequence $(C_{H}\circ\overline{S}_{H}^{-1})(M)=(\overline{S}_{H}^{-1}M)_{*}$ to a graded $A-$module$M$ and for all graded morphism of graded left $A-$modules$f : M\longrightarrow N$ of degree $k$we correspond the associated complex chain$(C_{H}\circ\overline{S}_{H}^{-1})(f)=(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $A-$module$f : M\longrightarrow N$is an additively exact covariant functor.
\item \noindent For all $n\in \mathbb{Z}$ fixed and for all $ M \in G_{r}(A-Mod)$ we have:$$\overline{S}^{-1}_{H}((H_{n}\circ C)(M))\cong H_{n}(C_{H}\circ \overline{S}^{-1}_{H})(M)).$$\end{enumerate}</description><identifier>ISSN: 1307-5543</identifier><identifier>EISSN: 1307-5543</identifier><identifier>DOI: 10.29020/nybg.ejpam.v16i3.4753</identifier><language>eng</language><ispartof>European journal of pure and applied mathematics, 2023-07, Vol.16 (3), p.1913-1939</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ould Chbih, Ahmed</creatorcontrib><creatorcontrib>Ben Maaouia, Mohamed Ben Faraj</creatorcontrib><creatorcontrib>Sanghare, Mamadou</creatorcontrib><title>Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring</title><title>European journal of pure and applied mathematics</title><description>The main results of this paper are : \\If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a partformed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicativelyclosed subset of $A$generated by $S_{H}$, then:
\begin{enumerate}\item The relation $C_{H}(-) :G_{r}(\overline{S}_{H}^{-1}A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$\overline{S}_{H}^{-1}A-$module $\overline{S}_{H}^{-1}M$ of $G_{r}(\overline{S}_{H}^{-1}A-Mod)$we correspond the associate complex sequence $(\overline{S}_{H}^{-1}M)_{*}$ to a graded $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}M$ and for all graded morphism of graded left $\overline{S}_{H}^{-1}A-$modules$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$ of degree $k$we correspond the associated complex chain$(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$is an additively exact covariant functor.\item The relation $(C_{H}\circ\overline{S}_{H}^{-1})(-) :G_{r}(A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$A-$module $M$ of $G_{r}(A-Mod)$we correspond the associate complex sequence $(C_{H}\circ\overline{S}_{H}^{-1})(M)=(\overline{S}_{H}^{-1}M)_{*}$ to a graded $A-$module$M$ and for all graded morphism of graded left $A-$modules$f : M\longrightarrow N$ of degree $k$we correspond the associated complex chain$(C_{H}\circ\overline{S}_{H}^{-1})(f)=(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $A-$module$f : M\longrightarrow N$is an additively exact covariant functor.
\item \noindent For all $n\in \mathbb{Z}$ fixed and for all $ M \in G_{r}(A-Mod)$ we have:$$\overline{S}^{-1}_{H}((H_{n}\circ C)(M))\cong H_{n}(C_{H}\circ \overline{S}^{-1}_{H})(M)).$$\end{enumerate}</description><issn>1307-5543</issn><issn>1307-5543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkEFLwzAYhoM4cOj-wvgOPWyH1qRZOz2OovPgUGT3kLVpzUj7lSQOq-xf-IPdisLw6Ol94X2fy0PImNEovqUxvW66TRWpbSvraMdSzaPZPOFnZMg4nYdJMuPnJ_2CjJzbUkpjdkN5yobk6xFzafSH9Bob0A34VwWZ9KpC20GQPa2eJ0vxafeTRbjCYjoNAEvIsG6NegfpHOb68C7A4x_0lOqhpZXF4WhU6SFYhEGNxZtRDnCnLMjf-UU31RUZlNI4NfrJS5Le362zhzC36JxVpWitrqXtBKOi1yCOGkSvQfQaxFED_zf4DXKda1k</recordid><startdate>20230730</startdate><enddate>20230730</enddate><creator>Ould Chbih, Ahmed</creator><creator>Ben Maaouia, Mohamed Ben Faraj</creator><creator>Sanghare, Mamadou</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230730</creationdate><title>Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring</title><author>Ould Chbih, Ahmed ; Ben Maaouia, Mohamed Ben Faraj ; Sanghare, Mamadou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_29020_nybg_ejpam_v16i3_47533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ould Chbih, Ahmed</creatorcontrib><creatorcontrib>Ben Maaouia, Mohamed Ben Faraj</creatorcontrib><creatorcontrib>Sanghare, Mamadou</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ould Chbih, Ahmed</au><au>Ben Maaouia, Mohamed Ben Faraj</au><au>Sanghare, Mamadou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring</atitle><jtitle>European journal of pure and applied mathematics</jtitle><date>2023-07-30</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1913</spage><epage>1939</epage><pages>1913-1939</pages><issn>1307-5543</issn><eissn>1307-5543</eissn><abstract>The main results of this paper are : \\If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a partformed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicativelyclosed subset of $A$generated by $S_{H}$, then:
\begin{enumerate}\item The relation $C_{H}(-) :G_{r}(\overline{S}_{H}^{-1}A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$\overline{S}_{H}^{-1}A-$module $\overline{S}_{H}^{-1}M$ of $G_{r}(\overline{S}_{H}^{-1}A-Mod)$we correspond the associate complex sequence $(\overline{S}_{H}^{-1}M)_{*}$ to a graded $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}M$ and for all graded morphism of graded left $\overline{S}_{H}^{-1}A-$modules$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$ of degree $k$we correspond the associated complex chain$(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $\overline{S}_{H}^{-1}A-$module$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$is an additively exact covariant functor.\item The relation $(C_{H}\circ\overline{S}_{H}^{-1})(-) :G_{r}(A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left$A-$module $M$ of $G_{r}(A-Mod)$we correspond the associate complex sequence $(C_{H}\circ\overline{S}_{H}^{-1})(M)=(\overline{S}_{H}^{-1}M)_{*}$ to a graded $A-$module$M$ and for all graded morphism of graded left $A-$modules$f : M\longrightarrow N$ of degree $k$we correspond the associated complex chain$(C_{H}\circ\overline{S}_{H}^{-1})(f)=(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $A-$module$f : M\longrightarrow N$is an additively exact covariant functor.
\item \noindent For all $n\in \mathbb{Z}$ fixed and for all $ M \in G_{r}(A-Mod)$ we have:$$\overline{S}^{-1}_{H}((H_{n}\circ C)(M))\cong H_{n}(C_{H}\circ \overline{S}^{-1}_{H})(M)).$$\end{enumerate}</abstract><doi>10.29020/nybg.ejpam.v16i3.4753</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1307-5543 |
ispartof | European journal of pure and applied mathematics, 2023-07, Vol.16 (3), p.1913-1939 |
issn | 1307-5543 1307-5543 |
language | eng |
recordid | cdi_crossref_primary_10_29020_nybg_ejpam_v16i3_4753 |
source | Free E-Journal (出版社公開部分のみ) |
title | Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20in%20the%20Category%20$COMP(G_%7Br%7D(A-Mod))$%20of%20Complex%20associated%20to%20the%20Category%20$G_%7Br%7D(A-Mod)$%20of%20Graded%20left%20$A-$modules%20over%20a%20Graded%20Ring&rft.jtitle=European%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Ould%20Chbih,%20Ahmed&rft.date=2023-07-30&rft.volume=16&rft.issue=3&rft.spage=1913&rft.epage=1939&rft.pages=1913-1939&rft.issn=1307-5543&rft.eissn=1307-5543&rft_id=info:doi/10.29020/nybg.ejpam.v16i3.4753&rft_dat=%3Ccrossref%3E10_29020_nybg_ejpam_v16i3_4753%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_29020_nybg_ejpam_v16i3_47533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |