Loading…
Numerical Finite-Difference Approximations of a Coupled Reaction-Diffusion System with Gradient Terms
This study focuses on the derivation of explicit and implicit finite difference formulas.The objective of this study is to derive an estimation of the blow-up time for a coupled reaction-diffusion system incorporating gradient terms, employing numerical finite difference approximations. Furthermore,...
Saved in:
Published in: | European journal of pure and applied mathematics 2024-07, Vol.17 (3), p.1516-1538 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1538 |
container_issue | 3 |
container_start_page | 1516 |
container_title | European journal of pure and applied mathematics |
container_volume | 17 |
creator | Khalil, Manar Hashim, Ishak Rasheed, Maan Samat, Faieza Momani, Shaher |
description | This study focuses on the derivation of explicit and implicit finite difference formulas.The objective of this study is to derive an estimation of the blow-up time for a coupled reaction-diffusion system incorporating gradient terms, employing numerical finite difference approximations. Furthermore, an examination is conducted on the consistency, stability, and convergence of the proposed schemes. Additionally, the study presents two numerical experiments. In each instance, the numerical blow-up time is calculated benefit the suggested methodologies, employing varying space steps and non-fixed time-stepping. The numerical findings obtained demonstrate that the blow-up time sequence exhibits convergence as the space step decreases. Moreover, thenumerical orders of convergence for the blow-up time goes well with the theoretical orders observed in the numerical solutions. |
doi_str_mv | 10.29020/nybg.ejpam.v17i3.5246 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_29020_nybg_ejpam_v17i3_5246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_29020_nybg_ejpam_v17i3_5246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-11d77f8bba3f31d145a863099e6e4d9d4ad2e64be9e6a626594238ba722bc23a3</originalsourceid><addsrcrecordid>eNpNkNtKw0AYhBdRsGhfQfYFEveUTXJZqq1CUdB6vfzJ_qtbmgO7qdq3N41eeDXDMAzDR8gNZ6komWC37bF6T3HXQ5N-8tzLNBNKn5EZlyxPskzJ83_-ksxj3DHGBC-Y1HxG8OnQYPA17OnKt37A5M47hwHbGumi70P37RsYfNdG2jkKdNkd-j1a-oJQn-Kpf4ijo6_HOGBDv_zwQdcBrMd2oFsMTbwmFw72Eed_ekXeVvfb5UOyeV4_LhebpB7_DAnnNs9dUVUgneSWqwwKLVlZokZlS6vACtSqwjEALXRWKiGLCnIhqlpIkFdE_-7WoYsxoDN9GO-Ho-HMTLzMiZeZeJmJlznxkj_V12O8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Finite-Difference Approximations of a Coupled Reaction-Diffusion System with Gradient Terms</title><source>EZB Electronic Journals Library</source><creator>Khalil, Manar ; Hashim, Ishak ; Rasheed, Maan ; Samat, Faieza ; Momani, Shaher</creator><creatorcontrib>Khalil, Manar ; Hashim, Ishak ; Rasheed, Maan ; Samat, Faieza ; Momani, Shaher</creatorcontrib><description>This study focuses on the derivation of explicit and implicit finite difference formulas.The objective of this study is to derive an estimation of the blow-up time for a coupled reaction-diffusion system incorporating gradient terms, employing numerical finite difference approximations. Furthermore, an examination is conducted on the consistency, stability, and convergence of the proposed schemes. Additionally, the study presents two numerical experiments. In each instance, the numerical blow-up time is calculated benefit the suggested methodologies, employing varying space steps and non-fixed time-stepping. The numerical findings obtained demonstrate that the blow-up time sequence exhibits convergence as the space step decreases. Moreover, thenumerical orders of convergence for the blow-up time goes well with the theoretical orders observed in the numerical solutions.</description><identifier>ISSN: 1307-5543</identifier><identifier>EISSN: 1307-5543</identifier><identifier>DOI: 10.29020/nybg.ejpam.v17i3.5246</identifier><language>eng</language><ispartof>European journal of pure and applied mathematics, 2024-07, Vol.17 (3), p.1516-1538</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4237-7140 ; 0000-0002-6326-8456 ; 0000-0002-8234-7758 ; 0000-0002-7955-1424 ; 0000-0001-8674-2934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Khalil, Manar</creatorcontrib><creatorcontrib>Hashim, Ishak</creatorcontrib><creatorcontrib>Rasheed, Maan</creatorcontrib><creatorcontrib>Samat, Faieza</creatorcontrib><creatorcontrib>Momani, Shaher</creatorcontrib><title>Numerical Finite-Difference Approximations of a Coupled Reaction-Diffusion System with Gradient Terms</title><title>European journal of pure and applied mathematics</title><description>This study focuses on the derivation of explicit and implicit finite difference formulas.The objective of this study is to derive an estimation of the blow-up time for a coupled reaction-diffusion system incorporating gradient terms, employing numerical finite difference approximations. Furthermore, an examination is conducted on the consistency, stability, and convergence of the proposed schemes. Additionally, the study presents two numerical experiments. In each instance, the numerical blow-up time is calculated benefit the suggested methodologies, employing varying space steps and non-fixed time-stepping. The numerical findings obtained demonstrate that the blow-up time sequence exhibits convergence as the space step decreases. Moreover, thenumerical orders of convergence for the blow-up time goes well with the theoretical orders observed in the numerical solutions.</description><issn>1307-5543</issn><issn>1307-5543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKw0AYhBdRsGhfQfYFEveUTXJZqq1CUdB6vfzJ_qtbmgO7qdq3N41eeDXDMAzDR8gNZ6komWC37bF6T3HXQ5N-8tzLNBNKn5EZlyxPskzJ83_-ksxj3DHGBC-Y1HxG8OnQYPA17OnKt37A5M47hwHbGumi70P37RsYfNdG2jkKdNkd-j1a-oJQn-Kpf4ijo6_HOGBDv_zwQdcBrMd2oFsMTbwmFw72Eed_ekXeVvfb5UOyeV4_LhebpB7_DAnnNs9dUVUgneSWqwwKLVlZokZlS6vACtSqwjEALXRWKiGLCnIhqlpIkFdE_-7WoYsxoDN9GO-Ho-HMTLzMiZeZeJmJlznxkj_V12O8</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Khalil, Manar</creator><creator>Hashim, Ishak</creator><creator>Rasheed, Maan</creator><creator>Samat, Faieza</creator><creator>Momani, Shaher</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4237-7140</orcidid><orcidid>https://orcid.org/0000-0002-6326-8456</orcidid><orcidid>https://orcid.org/0000-0002-8234-7758</orcidid><orcidid>https://orcid.org/0000-0002-7955-1424</orcidid><orcidid>https://orcid.org/0000-0001-8674-2934</orcidid></search><sort><creationdate>20240731</creationdate><title>Numerical Finite-Difference Approximations of a Coupled Reaction-Diffusion System with Gradient Terms</title><author>Khalil, Manar ; Hashim, Ishak ; Rasheed, Maan ; Samat, Faieza ; Momani, Shaher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-11d77f8bba3f31d145a863099e6e4d9d4ad2e64be9e6a626594238ba722bc23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Manar</creatorcontrib><creatorcontrib>Hashim, Ishak</creatorcontrib><creatorcontrib>Rasheed, Maan</creatorcontrib><creatorcontrib>Samat, Faieza</creatorcontrib><creatorcontrib>Momani, Shaher</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Manar</au><au>Hashim, Ishak</au><au>Rasheed, Maan</au><au>Samat, Faieza</au><au>Momani, Shaher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Finite-Difference Approximations of a Coupled Reaction-Diffusion System with Gradient Terms</atitle><jtitle>European journal of pure and applied mathematics</jtitle><date>2024-07-31</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>1516</spage><epage>1538</epage><pages>1516-1538</pages><issn>1307-5543</issn><eissn>1307-5543</eissn><abstract>This study focuses on the derivation of explicit and implicit finite difference formulas.The objective of this study is to derive an estimation of the blow-up time for a coupled reaction-diffusion system incorporating gradient terms, employing numerical finite difference approximations. Furthermore, an examination is conducted on the consistency, stability, and convergence of the proposed schemes. Additionally, the study presents two numerical experiments. In each instance, the numerical blow-up time is calculated benefit the suggested methodologies, employing varying space steps and non-fixed time-stepping. The numerical findings obtained demonstrate that the blow-up time sequence exhibits convergence as the space step decreases. Moreover, thenumerical orders of convergence for the blow-up time goes well with the theoretical orders observed in the numerical solutions.</abstract><doi>10.29020/nybg.ejpam.v17i3.5246</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4237-7140</orcidid><orcidid>https://orcid.org/0000-0002-6326-8456</orcidid><orcidid>https://orcid.org/0000-0002-8234-7758</orcidid><orcidid>https://orcid.org/0000-0002-7955-1424</orcidid><orcidid>https://orcid.org/0000-0001-8674-2934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1307-5543 |
ispartof | European journal of pure and applied mathematics, 2024-07, Vol.17 (3), p.1516-1538 |
issn | 1307-5543 1307-5543 |
language | eng |
recordid | cdi_crossref_primary_10_29020_nybg_ejpam_v17i3_5246 |
source | EZB Electronic Journals Library |
title | Numerical Finite-Difference Approximations of a Coupled Reaction-Diffusion System with Gradient Terms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Finite-Difference%20Approximations%20of%20a%20Coupled%20Reaction-Diffusion%20System%20with%20Gradient%20Terms&rft.jtitle=European%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Khalil,%20Manar&rft.date=2024-07-31&rft.volume=17&rft.issue=3&rft.spage=1516&rft.epage=1538&rft.pages=1516-1538&rft.issn=1307-5543&rft.eissn=1307-5543&rft_id=info:doi/10.29020/nybg.ejpam.v17i3.5246&rft_dat=%3Ccrossref%3E10_29020_nybg_ejpam_v17i3_5246%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-11d77f8bba3f31d145a863099e6e4d9d4ad2e64be9e6a626594238ba722bc23a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |