Loading…
Propagation of torsional waves in a radially layered cylindrical waveguide
It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to pro...
Saved in:
Published in: | Mechanics of solids 2008-04, Vol.43 (2), p.261-268 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953 |
---|---|
cites | |
container_end_page | 268 |
container_issue | 2 |
container_start_page | 261 |
container_title | Mechanics of solids |
container_volume | 43 |
creator | Akhmedov, N. K. |
description | It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2].
In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide. |
doi_str_mv | 10.3103/S002565440802012X |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S002565440802012X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20453853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953</originalsourceid><addsrcrecordid>eNp9kElLA0EUhBtRMC4_wFtfPI6-XtN9lOBKQMEcvA1vegkdxpnQnSjz752Q4EXw9B7UV0VRhFwxuBEMxO07AFdaSQkGODD-cUQmzApZTa3Qx2Syk6udfkrOSlkBaOCcTcjLW-7XuMRN6jvaR7rpcxlfbOk3foVCU0eRZvQJ23agLQ4hB0_d0KbO5-QO3HKbfLggJxHbEi4P95wsHu4Xs6dq_vr4PLubV04ws6kMBOvBcu214dI0HpmT0mrr7NjdxUYIcFMebTS68dEZlF6hV40K1lglzgnbx7rcl5JDrNc5fWIeagb1bov6zxaj53rvWWMZO8eMnUvl18hBKmGUGDm-58oodcuQ61W_zeMa5Z_wH5Labm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Propagation of torsional waves in a radially layered cylindrical waveguide</title><source>Springer Nature</source><creator>Akhmedov, N. K.</creator><creatorcontrib>Akhmedov, N. K.</creatorcontrib><description>It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2].
In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S002565440802012X</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Classical Mechanics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Physics and Astronomy ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Mechanics of solids, 2008-04, Vol.43 (2), p.261-268</ispartof><rights>Allerton Press, Inc. 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20453853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhmedov, N. K.</creatorcontrib><title>Propagation of torsional waves in a radially layered cylindrical waveguide</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2].
In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.</description><subject>Classical Mechanics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kElLA0EUhBtRMC4_wFtfPI6-XtN9lOBKQMEcvA1vegkdxpnQnSjz752Q4EXw9B7UV0VRhFwxuBEMxO07AFdaSQkGODD-cUQmzApZTa3Qx2Syk6udfkrOSlkBaOCcTcjLW-7XuMRN6jvaR7rpcxlfbOk3foVCU0eRZvQJ23agLQ4hB0_d0KbO5-QO3HKbfLggJxHbEi4P95wsHu4Xs6dq_vr4PLubV04ws6kMBOvBcu214dI0HpmT0mrr7NjdxUYIcFMebTS68dEZlF6hV40K1lglzgnbx7rcl5JDrNc5fWIeagb1bov6zxaj53rvWWMZO8eMnUvl18hBKmGUGDm-58oodcuQ61W_zeMa5Z_wH5Labm4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Akhmedov, N. K.</creator><general>Allerton Press, Inc</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>Propagation of torsional waves in a radially layered cylindrical waveguide</title><author>Akhmedov, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classical Mechanics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhmedov, N. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhmedov, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of torsional waves in a radially layered cylindrical waveguide</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>43</volume><issue>2</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2].
In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S002565440802012X</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6544 |
ispartof | Mechanics of solids, 2008-04, Vol.43 (2), p.261-268 |
issn | 0025-6544 1934-7936 |
language | eng |
recordid | cdi_crossref_primary_10_3103_S002565440802012X |
source | Springer Nature |
subjects | Classical Mechanics Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Physics and Astronomy Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Propagation of torsional waves in a radially layered cylindrical waveguide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20torsional%20waves%20in%20a%20radially%20layered%20cylindrical%20waveguide&rft.jtitle=Mechanics%20of%20solids&rft.au=Akhmedov,%20N.%20K.&rft.date=2008-04-01&rft.volume=43&rft.issue=2&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S002565440802012X&rft_dat=%3Cpascalfrancis_cross%3E20453853%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |