Loading…

Propagation of torsional waves in a radially layered cylindrical waveguide

It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to pro...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of solids 2008-04, Vol.43 (2), p.261-268
Main Author: Akhmedov, N. K.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953
cites
container_end_page 268
container_issue 2
container_start_page 261
container_title Mechanics of solids
container_volume 43
creator Akhmedov, N. K.
description It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2]. In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.
doi_str_mv 10.3103/S002565440802012X
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S002565440802012X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20453853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953</originalsourceid><addsrcrecordid>eNp9kElLA0EUhBtRMC4_wFtfPI6-XtN9lOBKQMEcvA1vegkdxpnQnSjz752Q4EXw9B7UV0VRhFwxuBEMxO07AFdaSQkGODD-cUQmzApZTa3Qx2Syk6udfkrOSlkBaOCcTcjLW-7XuMRN6jvaR7rpcxlfbOk3foVCU0eRZvQJ23agLQ4hB0_d0KbO5-QO3HKbfLggJxHbEi4P95wsHu4Xs6dq_vr4PLubV04ws6kMBOvBcu214dI0HpmT0mrr7NjdxUYIcFMebTS68dEZlF6hV40K1lglzgnbx7rcl5JDrNc5fWIeagb1bov6zxaj53rvWWMZO8eMnUvl18hBKmGUGDm-58oodcuQ61W_zeMa5Z_wH5Labm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Propagation of torsional waves in a radially layered cylindrical waveguide</title><source>Springer Nature</source><creator>Akhmedov, N. K.</creator><creatorcontrib>Akhmedov, N. K.</creatorcontrib><description>It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2]. In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S002565440802012X</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Classical Mechanics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Physics and Astronomy ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Mechanics of solids, 2008-04, Vol.43 (2), p.261-268</ispartof><rights>Allerton Press, Inc. 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20453853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhmedov, N. K.</creatorcontrib><title>Propagation of torsional waves in a radially layered cylindrical waveguide</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2]. In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.</description><subject>Classical Mechanics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kElLA0EUhBtRMC4_wFtfPI6-XtN9lOBKQMEcvA1vegkdxpnQnSjz752Q4EXw9B7UV0VRhFwxuBEMxO07AFdaSQkGODD-cUQmzApZTa3Qx2Syk6udfkrOSlkBaOCcTcjLW-7XuMRN6jvaR7rpcxlfbOk3foVCU0eRZvQJ23agLQ4hB0_d0KbO5-QO3HKbfLggJxHbEi4P95wsHu4Xs6dq_vr4PLubV04ws6kMBOvBcu214dI0HpmT0mrr7NjdxUYIcFMebTS68dEZlF6hV40K1lglzgnbx7rcl5JDrNc5fWIeagb1bov6zxaj53rvWWMZO8eMnUvl18hBKmGUGDm-58oodcuQ61W_zeMa5Z_wH5Labm4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Akhmedov, N. K.</creator><general>Allerton Press, Inc</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>Propagation of torsional waves in a radially layered cylindrical waveguide</title><author>Akhmedov, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classical Mechanics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhmedov, N. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhmedov, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of torsional waves in a radially layered cylindrical waveguide</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>43</volume><issue>2</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>It was shown in [1–3] that the spectrum of homogeneous solutions for layered bodies with alternating rigid and soft layers splits into the “lower” and “higher” parts. Moreover, the “lower” part is always associated with some applied theory. In [4], the method developed in [1–3] is generalized to problems of steady torsional vibrations of a radially inhomogeneous cylinder and to the dynamic case of the applied theory constructed in [2]. In the present paper, we use analytic and numerical methods to study the propagation of torsional waves in a radially layered cylindrical waveguide.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S002565440802012X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6544
ispartof Mechanics of solids, 2008-04, Vol.43 (2), p.261-268
issn 0025-6544
1934-7936
language eng
recordid cdi_crossref_primary_10_3103_S002565440802012X
source Springer Nature
subjects Classical Mechanics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Physics and Astronomy
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Propagation of torsional waves in a radially layered cylindrical waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20torsional%20waves%20in%20a%20radially%20layered%20cylindrical%20waveguide&rft.jtitle=Mechanics%20of%20solids&rft.au=Akhmedov,%20N.%20K.&rft.date=2008-04-01&rft.volume=43&rft.issue=2&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S002565440802012X&rft_dat=%3Cpascalfrancis_cross%3E20453853%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-80e9d0926d68248bda1c44969c9080cfb330c72f9f86bdfc8a4d5ad5b5e98953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true