Loading…
Uniform stability of a one-parameter family of difference schemes
We consider a difference scheme with weights approximating the nonlocal boundary value problem for a heat equation with a parameter in the boundary conditions. We prove uniform (in parameter) estimates of the solution scheme that demonstrate the consistency of the initial data in the mean-square nor...
Saved in:
Published in: | Moscow University computational mathematics and cybernetics 2011-03, Vol.35 (1), p.6-13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 6 |
container_title | Moscow University computational mathematics and cybernetics |
container_volume | 35 |
creator | Gulin, A. V. Mokin, A. Yu |
description | We consider a difference scheme with weights approximating the nonlocal boundary value problem for a heat equation with a parameter in the boundary conditions. We prove uniform (in parameter) estimates of the solution scheme that demonstrate the consistency of the initial data in the mean-square norm. |
doi_str_mv | 10.3103/S0278641910041028 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S0278641910041028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S0278641910041028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqHwAez8AwZ7nIezrCpeUiUW0HXk2DPgKo_KDov-PQllh8TqLs49o9Fl7FbJO62kvn-TUJkyV7WSMlcSzBnLVK1zYXIw5yxbsFj4JbtKaS9lUYI2GVvvhkBj7HmabBu6MB35SNzycUBxsNH2OGHkZPvQ_RAfiDDi4JAn94k9pmt2QbZLePObK7Z7fHjfPIvt69PLZr0VDqQ2AjUV6G1dkymrynsPBZIDS55IkqtBI0ijbKsdeN9qA4Reudbo0gE4rVdMne66OKYUkZpDDL2Nx0bJZtmg-bPB7MDJSXN3-MDY7MevOMxv_iN9A4iOXyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform stability of a one-parameter family of difference schemes</title><source>Springer Nature</source><creator>Gulin, A. V. ; Mokin, A. Yu</creator><creatorcontrib>Gulin, A. V. ; Mokin, A. Yu</creatorcontrib><description>We consider a difference scheme with weights approximating the nonlocal boundary value problem for a heat equation with a parameter in the boundary conditions. We prove uniform (in parameter) estimates of the solution scheme that demonstrate the consistency of the initial data in the mean-square norm.</description><identifier>ISSN: 0278-6419</identifier><identifier>EISSN: 1934-8428</identifier><identifier>DOI: 10.3103/S0278641910041028</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Moscow University computational mathematics and cybernetics, 2011-03, Vol.35 (1), p.6-13</ispartof><rights>Allerton Press, Inc. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33</citedby><cites>FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gulin, A. V.</creatorcontrib><creatorcontrib>Mokin, A. Yu</creatorcontrib><title>Uniform stability of a one-parameter family of difference schemes</title><title>Moscow University computational mathematics and cybernetics</title><addtitle>MoscowUniv.Comput.Math.Cybern</addtitle><description>We consider a difference scheme with weights approximating the nonlocal boundary value problem for a heat equation with a parameter in the boundary conditions. We prove uniform (in parameter) estimates of the solution scheme that demonstrate the consistency of the initial data in the mean-square norm.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0278-6419</issn><issn>1934-8428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqHwAez8AwZ7nIezrCpeUiUW0HXk2DPgKo_KDov-PQllh8TqLs49o9Fl7FbJO62kvn-TUJkyV7WSMlcSzBnLVK1zYXIw5yxbsFj4JbtKaS9lUYI2GVvvhkBj7HmabBu6MB35SNzycUBxsNH2OGHkZPvQ_RAfiDDi4JAn94k9pmt2QbZLePObK7Z7fHjfPIvt69PLZr0VDqQ2AjUV6G1dkymrynsPBZIDS55IkqtBI0ijbKsdeN9qA4Reudbo0gE4rVdMne66OKYUkZpDDL2Nx0bJZtmg-bPB7MDJSXN3-MDY7MevOMxv_iN9A4iOXyU</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Gulin, A. V.</creator><creator>Mokin, A. Yu</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201103</creationdate><title>Uniform stability of a one-parameter family of difference schemes</title><author>Gulin, A. V. ; Mokin, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulin, A. V.</creatorcontrib><creatorcontrib>Mokin, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University computational mathematics and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulin, A. V.</au><au>Mokin, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform stability of a one-parameter family of difference schemes</atitle><jtitle>Moscow University computational mathematics and cybernetics</jtitle><stitle>MoscowUniv.Comput.Math.Cybern</stitle><date>2011-03</date><risdate>2011</risdate><volume>35</volume><issue>1</issue><spage>6</spage><epage>13</epage><pages>6-13</pages><issn>0278-6419</issn><eissn>1934-8428</eissn><abstract>We consider a difference scheme with weights approximating the nonlocal boundary value problem for a heat equation with a parameter in the boundary conditions. We prove uniform (in parameter) estimates of the solution scheme that demonstrate the consistency of the initial data in the mean-square norm.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S0278641910041028</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6419 |
ispartof | Moscow University computational mathematics and cybernetics, 2011-03, Vol.35 (1), p.6-13 |
issn | 0278-6419 1934-8428 |
language | eng |
recordid | cdi_crossref_primary_10_3103_S0278641910041028 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics |
title | Uniform stability of a one-parameter family of difference schemes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20stability%20of%20a%20one-parameter%20family%20of%20difference%20schemes&rft.jtitle=Moscow%20University%20computational%20mathematics%20and%20cybernetics&rft.au=Gulin,%20A.%20V.&rft.date=2011-03&rft.volume=35&rft.issue=1&rft.spage=6&rft.epage=13&rft.pages=6-13&rft.issn=0278-6419&rft.eissn=1934-8428&rft_id=info:doi/10.3103/S0278641910041028&rft_dat=%3Ccrossref_sprin%3E10_3103_S0278641910041028%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2038-e3f5eda99f8677ddd25efc2afdff0fc923e2081ab3c2ddb382fed1cb836c22c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |