Loading…

Solution of fifth-degree equations

In this paper we establish a relationship between two approaches to the solution of algebraic fifth-degree equations, namely, the Hermite-Kronecker method (based on the modular elliptic equation) and the Mellin method (based on hypergeometric series).

Saved in:
Bibliographic Details
Published in:Russian mathematics 2009-06, Vol.53 (6), p.15-23
Main Author: Mikhalkin, E. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3
cites cdi_FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3
container_end_page 23
container_issue 6
container_start_page 15
container_title Russian mathematics
container_volume 53
creator Mikhalkin, E. N.
description In this paper we establish a relationship between two approaches to the solution of algebraic fifth-degree equations, namely, the Hermite-Kronecker method (based on the modular elliptic equation) and the Mellin method (based on hypergeometric series).
doi_str_mv 10.3103/S1066369X09060036
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X09060036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X09060036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3</originalsourceid><addsrcrecordid>eNp9jz1PwzAQhi0EEqX0B7BF7IY7OzniEVV8SZUY2qFb5Ni-NlVJwE4G_j2JyobEdCc973O6V4gbhDuNoO_XCESazBYMEICmMzFDo3NZImzPx33EcuKX4iqlA0BBKqeZuF13x6FvujbrOOOG-730YRdDyMLXYCeQrsUF22MKi985F5vnp83yVa7eX96WjyvpFJa9rAP52jqyBXok9UDIxnkiMjmDL4gseaXRKGarsUTnQbMCrotAVlk9F3g662KXUgxcfcbmw8bvCqGaOlZ_Oo6OOjlpzLa7EKtDN8R2_PIf6QcQSVMd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution of fifth-degree equations</title><source>Springer Link</source><creator>Mikhalkin, E. N.</creator><creatorcontrib>Mikhalkin, E. N.</creatorcontrib><description>In this paper we establish a relationship between two approaches to the solution of algebraic fifth-degree equations, namely, the Hermite-Kronecker method (based on the modular elliptic equation) and the Mellin method (based on hypergeometric series).</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X09060036</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2009-06, Vol.53 (6), p.15-23</ispartof><rights>Allerton Press, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3</citedby><cites>FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mikhalkin, E. N.</creatorcontrib><title>Solution of fifth-degree equations</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this paper we establish a relationship between two approaches to the solution of algebraic fifth-degree equations, namely, the Hermite-Kronecker method (based on the modular elliptic equation) and the Mellin method (based on hypergeometric series).</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9jz1PwzAQhi0EEqX0B7BF7IY7OzniEVV8SZUY2qFb5Ni-NlVJwE4G_j2JyobEdCc973O6V4gbhDuNoO_XCESazBYMEICmMzFDo3NZImzPx33EcuKX4iqlA0BBKqeZuF13x6FvujbrOOOG-730YRdDyMLXYCeQrsUF22MKi985F5vnp83yVa7eX96WjyvpFJa9rAP52jqyBXok9UDIxnkiMjmDL4gseaXRKGarsUTnQbMCrotAVlk9F3g662KXUgxcfcbmw8bvCqGaOlZ_Oo6OOjlpzLa7EKtDN8R2_PIf6QcQSVMd</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Mikhalkin, E. N.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Solution of fifth-degree equations</title><author>Mikhalkin, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhalkin, E. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhalkin, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of fifth-degree equations</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>53</volume><issue>6</issue><spage>15</spage><epage>23</epage><pages>15-23</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this paper we establish a relationship between two approaches to the solution of algebraic fifth-degree equations, namely, the Hermite-Kronecker method (based on the modular elliptic equation) and the Mellin method (based on hypergeometric series).</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X09060036</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2009-06, Vol.53 (6), p.15-23
issn 1066-369X
1934-810X
language eng
recordid cdi_crossref_primary_10_3103_S1066369X09060036
source Springer Link
subjects Mathematics
Mathematics and Statistics
title Solution of fifth-degree equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20fifth-degree%20equations&rft.jtitle=Russian%20mathematics&rft.au=Mikhalkin,%20E.%20N.&rft.date=2009-06-01&rft.volume=53&rft.issue=6&rft.spage=15&rft.epage=23&rft.pages=15-23&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X09060036&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X09060036%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-be6dbac6a51d162761f9cd66694f0d566a6d23192ffa3181cd03f20fb5e6a2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true