Loading…

Representation of automorphic forms as lacunary series and Blaschke products

In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blas...

Full description

Saved in:
Bibliographic Details
Published in:Russian mathematics 2009-11, Vol.53 (11), p.58-62
Main Author: Garif’yanov, F. N.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263
cites
container_end_page 62
container_issue 11
container_start_page 58
container_title Russian mathematics
container_volume 53
creator Garif’yanov, F. N.
description In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.
doi_str_mv 10.3103/S1066369X09110085
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X09110085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X09110085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AoFd23GcI1T8SZWQ-JF6i1x7Q1PaOLKTA2-PK7ghcdrVznyr0TB2iXAlEeT1K4LWUtcrqBEBTHnEZlhLVRiE1XHes1wc9FN2ltIWoNRC6RlbvtAQKVE_2rELPQ8tt9MY9iEOm87xNsR94jbxnXVTb-MXTxQ7yqfe89udTW7zSXyIwU9uTOfspLW7RBe_c87e7-_eFo_F8vnhaXGzLJxAMxaV8GZdK-GpJFgbXSlLFoCMFm6NZFVVU4mtRO9l631Ve1ViaStVISkjtJwz_PnrYkgpUtsMsdvndA1Cc6ij-VNHZsQPk7K3_6DYbMMU-xzzH-gbBlRjOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representation of automorphic forms as lacunary series and Blaschke products</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Garif’yanov, F. N.</creator><creatorcontrib>Garif’yanov, F. N.</creatorcontrib><description>In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X09110085</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2009-11, Vol.53 (11), p.58-62</ispartof><rights>Allerton Press, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Garif’yanov, F. N.</creatorcontrib><title>Representation of automorphic forms as lacunary series and Blaschke products</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AoFd23GcI1T8SZWQ-JF6i1x7Q1PaOLKTA2-PK7ghcdrVznyr0TB2iXAlEeT1K4LWUtcrqBEBTHnEZlhLVRiE1XHes1wc9FN2ltIWoNRC6RlbvtAQKVE_2rELPQ8tt9MY9iEOm87xNsR94jbxnXVTb-MXTxQ7yqfe89udTW7zSXyIwU9uTOfspLW7RBe_c87e7-_eFo_F8vnhaXGzLJxAMxaV8GZdK-GpJFgbXSlLFoCMFm6NZFVVU4mtRO9l631Ve1ViaStVISkjtJwz_PnrYkgpUtsMsdvndA1Cc6ij-VNHZsQPk7K3_6DYbMMU-xzzH-gbBlRjOg</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Garif’yanov, F. N.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>Representation of automorphic forms as lacunary series and Blaschke products</title><author>Garif’yanov, F. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garif’yanov, F. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garif’yanov, F. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of automorphic forms as lacunary series and Blaschke products</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>53</volume><issue>11</issue><spage>58</spage><epage>62</epage><pages>58-62</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X09110085</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2009-11, Vol.53 (11), p.58-62
issn 1066-369X
1934-810X
language eng
recordid cdi_crossref_primary_10_3103_S1066369X09110085
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Mathematics
Mathematics and Statistics
title Representation of automorphic forms as lacunary series and Blaschke products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20automorphic%20forms%20as%20lacunary%20series%20and%20Blaschke%20products&rft.jtitle=Russian%20mathematics&rft.au=Garif%E2%80%99yanov,%20F.%20N.&rft.date=2009-11-01&rft.volume=53&rft.issue=11&rft.spage=58&rft.epage=62&rft.pages=58-62&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X09110085&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X09110085%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true