Loading…
Representation of automorphic forms as lacunary series and Blaschke products
In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blas...
Saved in:
Published in: | Russian mathematics 2009-11, Vol.53 (11), p.58-62 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263 |
---|---|
cites | |
container_end_page | 62 |
container_issue | 11 |
container_start_page | 58 |
container_title | Russian mathematics |
container_volume | 53 |
creator | Garif’yanov, F. N. |
description | In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product. |
doi_str_mv | 10.3103/S1066369X09110085 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X09110085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X09110085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AoFd23GcI1T8SZWQ-JF6i1x7Q1PaOLKTA2-PK7ghcdrVznyr0TB2iXAlEeT1K4LWUtcrqBEBTHnEZlhLVRiE1XHes1wc9FN2ltIWoNRC6RlbvtAQKVE_2rELPQ8tt9MY9iEOm87xNsR94jbxnXVTb-MXTxQ7yqfe89udTW7zSXyIwU9uTOfspLW7RBe_c87e7-_eFo_F8vnhaXGzLJxAMxaV8GZdK-GpJFgbXSlLFoCMFm6NZFVVU4mtRO9l631Ve1ViaStVISkjtJwz_PnrYkgpUtsMsdvndA1Cc6ij-VNHZsQPk7K3_6DYbMMU-xzzH-gbBlRjOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representation of automorphic forms as lacunary series and Blaschke products</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Garif’yanov, F. N.</creator><creatorcontrib>Garif’yanov, F. N.</creatorcontrib><description>In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X09110085</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2009-11, Vol.53 (11), p.58-62</ispartof><rights>Allerton Press, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Garif’yanov, F. N.</creatorcontrib><title>Representation of automorphic forms as lacunary series and Blaschke products</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AoFd23GcI1T8SZWQ-JF6i1x7Q1PaOLKTA2-PK7ghcdrVznyr0TB2iXAlEeT1K4LWUtcrqBEBTHnEZlhLVRiE1XHes1wc9FN2ltIWoNRC6RlbvtAQKVE_2rELPQ8tt9MY9iEOm87xNsR94jbxnXVTb-MXTxQ7yqfe89udTW7zSXyIwU9uTOfspLW7RBe_c87e7-_eFo_F8vnhaXGzLJxAMxaV8GZdK-GpJFgbXSlLFoCMFm6NZFVVU4mtRO9l631Ve1ViaStVISkjtJwz_PnrYkgpUtsMsdvndA1Cc6ij-VNHZsQPk7K3_6DYbMMU-xzzH-gbBlRjOg</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Garif’yanov, F. N.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>Representation of automorphic forms as lacunary series and Blaschke products</title><author>Garif’yanov, F. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garif’yanov, F. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garif’yanov, F. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation of automorphic forms as lacunary series and Blaschke products</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>53</volume><issue>11</issue><spage>58</spage><epage>62</epage><pages>58-62</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>In this paper we consider Fuchsian groups of convergent type. We construct automorphic forms of various weights as lacunary series with respect to a set of transformations of a group that does not have the structure of a subgroup. We also construct an automorphic form of zero weight that is the Blaschke product.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X09110085</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-369X |
ispartof | Russian mathematics, 2009-11, Vol.53 (11), p.58-62 |
issn | 1066-369X 1934-810X |
language | eng |
recordid | cdi_crossref_primary_10_3103_S1066369X09110085 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Mathematics Mathematics and Statistics |
title | Representation of automorphic forms as lacunary series and Blaschke products |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20of%20automorphic%20forms%20as%20lacunary%20series%20and%20Blaschke%20products&rft.jtitle=Russian%20mathematics&rft.au=Garif%E2%80%99yanov,%20F.%20N.&rft.date=2009-11-01&rft.volume=53&rft.issue=11&rft.spage=58&rft.epage=62&rft.pages=58-62&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X09110085&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X09110085%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-72d8b942de5e0b8674aea00e862cb1ea479e51f31dd3fdd79d4515a7471e48263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |