Loading…

The effect of geomagnetically induced currents on the thermal conditions of power transformers

Methods to calculate the thermal processes and temperature of the most heated points of the tank and windings of a power transformer in conditions of flow of geomagnetically induced currents in grounded windings are developed. Dependences of additional loss in the tank and windings are obtained for...

Full description

Saved in:
Bibliographic Details
Published in:Russian electrical engineering 2016, Vol.87 (1), p.53-58
Main Authors: Vakhnina, V. V., Kuznetsov, V. N., Shapovalov, V. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methods to calculate the thermal processes and temperature of the most heated points of the tank and windings of a power transformer in conditions of flow of geomagnetically induced currents in grounded windings are developed. Dependences of additional loss in the tank and windings are obtained for a TRDN-63000/115/6.3/6.3 power transformer. It is shown that additional losses in power transformer windings are caused by the geomagnetically induced currents and depend on the first and n th harmonic components of magnetizing current, as well as on the load factor of a power transformer. The dependences of excess temperature of the most heated points of windings over ambient temperature on the geomagnetically induced current and load factor are determined. It is found that the excess temperature of the most heated point of winding over ambient temperature is also affected by the total additional loss of active power in the tank caused by the eddy currents at a geomagnetic storm. The acceptable load capacity of power transformers in geomagnetic storms with different intensities is determined in dependence on the ambient temperature. An increase in the load capacity of power transformers above set values in geomagnetic storms can lead to overheating of transformer windings and triggering of transformer gas protection, which will cause an electric power system to malfunction.
ISSN:1068-3712
1934-8010
DOI:10.3103/S1068371216010119