Loading…

Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines

The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent commun...

Full description

Saved in:
Bibliographic Details
Published in:Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2024-02, Vol.60 (1), p.1-10
Main Authors: Sidelnikov, O. S., Redyuk, A. A., Fedoruk, M. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83
container_end_page 10
container_issue 1
container_start_page 1
container_title Optoelectronics, instrumentation, and data processing
container_volume 60
creator Sidelnikov, O. S.
Redyuk, A. A.
Fedoruk, M. P.
description The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.
doi_str_mv 10.3103/S8756699024700018
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S8756699024700018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S8756699024700018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83</originalsourceid><addsrcrecordid>eNp9kLFOwzAYhC0EEqXwAGx-gcDvOE7iERVKkVJ1KMyR-9tOXTV2ZacDb0-isiEx3fDdnXRHyCODJ86AP2_rSpSllJAXFQCw-orMmORFVsmiuCazCWcTvyV3KR0AhBjBjLRrhXvnDW2Mit75jq7NsA86URsiXYT-ZHxSwwS2rvPqSF9dGkIcXPCJOk-XbmditjkNDid7f_YO1URpM9ame3Jj1TGZh1-dk6_l2-dilTWb94_FS5Mhq2DIRAHCMEQsAYW2yM3OWFGB0LIUgkFdalVaiQxQV4rVHIFrPS7GvJbS1nxO2KUXY0gpGtueoutV_G4ZtNND7Z-Hxkx-yaTR6zsT20M4x3Fj-if0AxbMaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</title><source>Springer Nature</source><creator>Sidelnikov, O. S. ; Redyuk, A. A. ; Fedoruk, M. P.</creator><creatorcontrib>Sidelnikov, O. S. ; Redyuk, A. A. ; Fedoruk, M. P.</creatorcontrib><description>The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.</description><identifier>ISSN: 8756-6990</identifier><identifier>EISSN: 1934-7944</identifier><identifier>DOI: 10.3103/S8756699024700018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial Intelligence Methods ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optoelectronics, instrumentation, and data processing, 2024-02, Vol.60 (1), p.1-10</ispartof><rights>Allerton Press, Inc. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sidelnikov, O. S.</creatorcontrib><creatorcontrib>Redyuk, A. A.</creatorcontrib><creatorcontrib>Fedoruk, M. P.</creatorcontrib><title>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</title><title>Optoelectronics, instrumentation, and data processing</title><addtitle>Optoelectron.Instrument.Proc</addtitle><description>The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.</description><subject>Artificial Intelligence Methods</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>8756-6990</issn><issn>1934-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAYhC0EEqXwAGx-gcDvOE7iERVKkVJ1KMyR-9tOXTV2ZacDb0-isiEx3fDdnXRHyCODJ86AP2_rSpSllJAXFQCw-orMmORFVsmiuCazCWcTvyV3KR0AhBjBjLRrhXvnDW2Mit75jq7NsA86URsiXYT-ZHxSwwS2rvPqSF9dGkIcXPCJOk-XbmditjkNDid7f_YO1URpM9ame3Jj1TGZh1-dk6_l2-dilTWb94_FS5Mhq2DIRAHCMEQsAYW2yM3OWFGB0LIUgkFdalVaiQxQV4rVHIFrPS7GvJbS1nxO2KUXY0gpGtueoutV_G4ZtNND7Z-Hxkx-yaTR6zsT20M4x3Fj-if0AxbMaVQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Sidelnikov, O. S.</creator><creator>Redyuk, A. A.</creator><creator>Fedoruk, M. P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</title><author>Sidelnikov, O. S. ; Redyuk, A. A. ; Fedoruk, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence Methods</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidelnikov, O. S.</creatorcontrib><creatorcontrib>Redyuk, A. A.</creatorcontrib><creatorcontrib>Fedoruk, M. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics, instrumentation, and data processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidelnikov, O. S.</au><au>Redyuk, A. A.</au><au>Fedoruk, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</atitle><jtitle>Optoelectronics, instrumentation, and data processing</jtitle><stitle>Optoelectron.Instrument.Proc</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>8756-6990</issn><eissn>1934-7944</eissn><abstract>The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S8756699024700018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-6990
ispartof Optoelectronics, instrumentation, and data processing, 2024-02, Vol.60 (1), p.1-10
issn 8756-6990
1934-7944
language eng
recordid cdi_crossref_primary_10_3103_S8756699024700018
source Springer Nature
subjects Artificial Intelligence Methods
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
title Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20for%20Compensating%20Signal%20Distortions%20in%20Fiber-Optic%20Communication%20Lines&rft.jtitle=Optoelectronics,%20instrumentation,%20and%20data%20processing&rft.au=Sidelnikov,%20O.%20S.&rft.date=2024-02-01&rft.volume=60&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=8756-6990&rft.eissn=1934-7944&rft_id=info:doi/10.3103/S8756699024700018&rft_dat=%3Ccrossref_sprin%3E10_3103_S8756699024700018%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true