Loading…
Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines
The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent commun...
Saved in:
Published in: | Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2024-02, Vol.60 (1), p.1-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 1 |
container_title | Optoelectronics, instrumentation, and data processing |
container_volume | 60 |
creator | Sidelnikov, O. S. Redyuk, A. A. Fedoruk, M. P. |
description | The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity. |
doi_str_mv | 10.3103/S8756699024700018 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S8756699024700018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S8756699024700018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83</originalsourceid><addsrcrecordid>eNp9kLFOwzAYhC0EEqXwAGx-gcDvOE7iERVKkVJ1KMyR-9tOXTV2ZacDb0-isiEx3fDdnXRHyCODJ86AP2_rSpSllJAXFQCw-orMmORFVsmiuCazCWcTvyV3KR0AhBjBjLRrhXvnDW2Mit75jq7NsA86URsiXYT-ZHxSwwS2rvPqSF9dGkIcXPCJOk-XbmditjkNDid7f_YO1URpM9ame3Jj1TGZh1-dk6_l2-dilTWb94_FS5Mhq2DIRAHCMEQsAYW2yM3OWFGB0LIUgkFdalVaiQxQV4rVHIFrPS7GvJbS1nxO2KUXY0gpGtueoutV_G4ZtNND7Z-Hxkx-yaTR6zsT20M4x3Fj-if0AxbMaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</title><source>Springer Nature</source><creator>Sidelnikov, O. S. ; Redyuk, A. A. ; Fedoruk, M. P.</creator><creatorcontrib>Sidelnikov, O. S. ; Redyuk, A. A. ; Fedoruk, M. P.</creatorcontrib><description>The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.</description><identifier>ISSN: 8756-6990</identifier><identifier>EISSN: 1934-7944</identifier><identifier>DOI: 10.3103/S8756699024700018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial Intelligence Methods ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optoelectronics, instrumentation, and data processing, 2024-02, Vol.60 (1), p.1-10</ispartof><rights>Allerton Press, Inc. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sidelnikov, O. S.</creatorcontrib><creatorcontrib>Redyuk, A. A.</creatorcontrib><creatorcontrib>Fedoruk, M. P.</creatorcontrib><title>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</title><title>Optoelectronics, instrumentation, and data processing</title><addtitle>Optoelectron.Instrument.Proc</addtitle><description>The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.</description><subject>Artificial Intelligence Methods</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>8756-6990</issn><issn>1934-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAYhC0EEqXwAGx-gcDvOE7iERVKkVJ1KMyR-9tOXTV2ZacDb0-isiEx3fDdnXRHyCODJ86AP2_rSpSllJAXFQCw-orMmORFVsmiuCazCWcTvyV3KR0AhBjBjLRrhXvnDW2Mit75jq7NsA86URsiXYT-ZHxSwwS2rvPqSF9dGkIcXPCJOk-XbmditjkNDid7f_YO1URpM9ame3Jj1TGZh1-dk6_l2-dilTWb94_FS5Mhq2DIRAHCMEQsAYW2yM3OWFGB0LIUgkFdalVaiQxQV4rVHIFrPS7GvJbS1nxO2KUXY0gpGtueoutV_G4ZtNND7Z-Hxkx-yaTR6zsT20M4x3Fj-if0AxbMaVQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Sidelnikov, O. S.</creator><creator>Redyuk, A. A.</creator><creator>Fedoruk, M. P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</title><author>Sidelnikov, O. S. ; Redyuk, A. A. ; Fedoruk, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence Methods</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidelnikov, O. S.</creatorcontrib><creatorcontrib>Redyuk, A. A.</creatorcontrib><creatorcontrib>Fedoruk, M. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics, instrumentation, and data processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidelnikov, O. S.</au><au>Redyuk, A. A.</au><au>Fedoruk, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines</atitle><jtitle>Optoelectronics, instrumentation, and data processing</jtitle><stitle>Optoelectron.Instrument.Proc</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>60</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>8756-6990</issn><eissn>1934-7944</eissn><abstract>The article addresses current issues in the field of fiber-optic data transmission, related to the constant increase in demand for communication system bandwidth and nonlinear response. The main machine learning methods used to compensate for nonlinear signal distortions in long-haul coherent communication lines are presented, including neural networks of various architectures. The paper emphasizes the promise of machine learning-based solutions for enhancing the performance of optical fiber communication systems, thanks to their ability to derive effective and adaptive signal recovery schemes with low computational complexity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S8756699024700018</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-6990 |
ispartof | Optoelectronics, instrumentation, and data processing, 2024-02, Vol.60 (1), p.1-10 |
issn | 8756-6990 1934-7944 |
language | eng |
recordid | cdi_crossref_primary_10_3103_S8756699024700018 |
source | Springer Nature |
subjects | Artificial Intelligence Methods Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
title | Machine Learning Methods for Compensating Signal Distortions in Fiber-Optic Communication Lines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20for%20Compensating%20Signal%20Distortions%20in%20Fiber-Optic%20Communication%20Lines&rft.jtitle=Optoelectronics,%20instrumentation,%20and%20data%20processing&rft.au=Sidelnikov,%20O.%20S.&rft.date=2024-02-01&rft.volume=60&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=8756-6990&rft.eissn=1934-7944&rft_id=info:doi/10.3103/S8756699024700018&rft_dat=%3Ccrossref_sprin%3E10_3103_S8756699024700018%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-5405e1ccc60c5dfc3ebef5705d96551086da6f9c10cd7a183c03dd566c2899f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |