Loading…
Land Use and Transportation Planning for Twin Cities Using a Genetic Algorithm
A new approach to future land use and transportation planning for high-growth cities is presented. The approach employs a genetic algorithm to efficiently search through hundreds of thousands of possible future plans. A new fitness function is developed to guide the genetic algorithm toward a Pareto...
Saved in:
Published in: | Transportation research record 2000, Vol.1722 (1), p.67-74 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new approach to future land use and transportation planning for high-growth cities is presented. The approach employs a genetic algorithm to efficiently search through hundreds of thousands of possible future plans. A new fitness function is developed to guide the genetic algorithm toward a Pareto set of plans for the multiple competing objectives that are involved. This set may be placed before decision makers. A Pareto set scanner also is described that assists decision makers in shopping through the Pareto set to select a plan. Some of the differences between simultaneous planning and separate planning of highly coupled twin cities also are examined. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.3141/1722-08 |