Loading…
Intersection Level of Service for the Bicycle Through Movement
The Florida Department of Transportation (DOT) has initiated multi-modal level-of-service (LOS) methodologies, including that for the bicycle travel mode. It has already adopted a bicycle LOS methodology for the roadway segment portion of the transportation network, the Bicycle Level of Service Mode...
Saved in:
Published in: | Transportation research record 2003, Vol.1828 (1), p.101-106 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Florida Department of Transportation (DOT) has initiated multi-modal level-of-service (LOS) methodologies, including that for the bicycle travel mode. It has already adopted a bicycle LOS methodology for the roadway segment portion of the transportation network, the Bicycle Level of Service Model. Florida DOT’s ultimate goal is to develop corridor- and facilities-level LOS methodologies. Toward that goal, Florida DOT sponsored research to develop the first part of an intersection bicycle LOS methodology, the Intersection LOS for the bicycle through movement. This Intersection LOS for the bicycle through movement would provide a measure of the level of safety and comfort experienced by bicyclists riding through an intersection. The Intersection LOS model for the bicycle through movement is based on Pearson correlation analyses and stepwise regression modeling of approximately 1,000 combined real-time perceptions from bicyclists traveling a course through a typical U.S. metropolitan area’s signalized intersections. The study’s participants represented a cross section of age, gender, and geographic origin of the population of cyclists. Although further hypothesis testing is being conducted, the resulting general model for the Intersection LOS for the bicycle through movement is highly reliable, has a high correlation coefficient (R2 = 0.83) with the average observations, and is transferable to the vast majority of U.S. metropolitan areas. The study reveals that roadway traffic volume, total width of the outside through lane, and the intersection (cross street) crossing distance are primary factors in the Intersection LOS for the bicycle through movement. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.3141/1828-12 |