Loading…

Shear Wave Velocity Profiles of Roadway Substructures from Multichannel Analysis of Surface Waves and Waveform Tomography

Assessment of roadway subsidence caused by embedded low-velocity anomalies is critical to the health and safety of the traveling public. Surface-based seismic techniques are often used to assess roadways because of data acquisition convenience and large depths of characterization. To mitigate the ne...

Full description

Saved in:
Bibliographic Details
Published in:Transportation research record 2017, Vol.2655 (1), p.36-44
Main Authors: Tran, Khiem T., Sperry, Justin, McVay, Michael, Wasman, Scott J., Horhota, David
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessment of roadway subsidence caused by embedded low-velocity anomalies is critical to the health and safety of the traveling public. Surface-based seismic techniques are often used to assess roadways because of data acquisition convenience and large depths of characterization. To mitigate the negative impact of closing a traffic lane under traditional seismic testing, a new test system that uses a land streamer is presented. The main advantages of the system are the elimination of the need to couple the geophones to the roadway, the use of only one source at the end of the geophone array, and the movement of the whole test system along the roadway quickly. For demonstration, experimental data were collected on asphalt pavement overlying a backfilled sinkhole that was experiencing further subsidence. For the study, a 24-channel land streamer and a propelled energy generator to generate seismic energy were used. The test system was pulled by a pickup truck along the roadway and the data were collected with 81 shots at every 3 m for a road segment of 277.5 m, with a total data acquisition time of about 1 h. The measured seismic data set was analyzed by the standard multichannel analysis of surface waves (MASW) and advanced two-dimensional (2-D) waveform tomography methods. Eighty-one one-dimensional shear wave velocity (VS) profiles from the MASW were combined to obtain a single 2-D profile. The waveform tomography method was able to characterize subsurface structures at a high resolution (1.5- Ă— 1.5-m cells) along the test length to a depth of 22.5 m. Very low S-wave velocity was obtained at the repaired sinkhole location. The 2-D VS profiles from the MASW and waveform tomography methods are consistent. Both methods were able to delineate high- and low-velocity soil layers and variable bedrock.
ISSN:0361-1981
2169-4052
DOI:10.3141/2655-06