Loading…
Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
We investigate Bayesian non-parametric inference of the Λ-measure of Λ-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any...
Saved in:
Published in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2018-08, Vol.24 (3), p.2122-2153 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23 |
container_end_page | 2153 |
container_issue | 3 |
container_start_page | 2122 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 24 |
creator | KOSKELA, JERE JENKINS, PAUL A. SPANÒ, DARIO |
description | We investigate Bayesian non-parametric inference of the Λ-measure of Λ-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n ∈ ℕ is constant across Λ-measures whose leading n – 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis–Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study. |
doi_str_mv | 10.3150/16-BEJ923 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3150_16_BEJ923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26492063</jstor_id><sourcerecordid>26492063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhT2ARCkMPACSVwaDf-Lrho1W5U-VYOgeOTc3IlVrV3aWPAvvxDMRFISYjo7OpzN8jF0peWuUlXcKxHL9WmpzwmbKWCmcBnvGznPeSakKADljuPQD5c4HHmIQR5_8gfrUIe9CS4kCEm9j4l-fAqPfU0YKfb7n7zH3lLpxwRhyN5aAA_eh4Z7_OxnjIzYX7LT1-0yXvzln28f1dvUsNm9PL6uHjUCtoBdUWJKldIjomxpdA2gX2toWPTTgamoUAcDCOuNMq4ymGhUuSuNqCV6bObuZbjHFnBO11TF1B5-GSsnqR0iloJqEjOz1xO5yH9MfqKEotQRjvgGWEGFn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method</title><source>JSTOR Journals and Primary Sources</source><creator>KOSKELA, JERE ; JENKINS, PAUL A. ; SPANÒ, DARIO</creator><creatorcontrib>KOSKELA, JERE ; JENKINS, PAUL A. ; SPANÒ, DARIO</creatorcontrib><description>We investigate Bayesian non-parametric inference of the Λ-measure of Λ-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n ∈ ℕ is constant across Λ-measures whose leading n – 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis–Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/16-BEJ923</identifier><language>eng</language><publisher>INTERNATIONAL STATISTICAL INSTITUTE</publisher><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2018-08, Vol.24 (3), p.2122-2153</ispartof><rights>2018 International Statistical Institute/Bernoulli Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23</citedby><cites>FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26492063$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26492063$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>KOSKELA, JERE</creatorcontrib><creatorcontrib>JENKINS, PAUL A.</creatorcontrib><creatorcontrib>SPANÒ, DARIO</creatorcontrib><title>Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We investigate Bayesian non-parametric inference of the Λ-measure of Λ-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n ∈ ℕ is constant across Λ-measures whose leading n – 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis–Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study.</description><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAUhT2ARCkMPACSVwaDf-Lrho1W5U-VYOgeOTc3IlVrV3aWPAvvxDMRFISYjo7OpzN8jF0peWuUlXcKxHL9WmpzwmbKWCmcBnvGznPeSakKADljuPQD5c4HHmIQR5_8gfrUIe9CS4kCEm9j4l-fAqPfU0YKfb7n7zH3lLpxwRhyN5aAA_eh4Z7_OxnjIzYX7LT1-0yXvzln28f1dvUsNm9PL6uHjUCtoBdUWJKldIjomxpdA2gX2toWPTTgamoUAcDCOuNMq4ymGhUuSuNqCV6bObuZbjHFnBO11TF1B5-GSsnqR0iloJqEjOz1xO5yH9MfqKEotQRjvgGWEGFn</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>KOSKELA, JERE</creator><creator>JENKINS, PAUL A.</creator><creator>SPANÒ, DARIO</creator><general>INTERNATIONAL STATISTICAL INSTITUTE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method</title><author>KOSKELA, JERE ; JENKINS, PAUL A. ; SPANÒ, DARIO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOSKELA, JERE</creatorcontrib><creatorcontrib>JENKINS, PAUL A.</creatorcontrib><creatorcontrib>SPANÒ, DARIO</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOSKELA, JERE</au><au>JENKINS, PAUL A.</au><au>SPANÒ, DARIO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>3</issue><spage>2122</spage><epage>2153</epage><pages>2122-2153</pages><issn>1350-7265</issn><abstract>We investigate Bayesian non-parametric inference of the Λ-measure of Λ-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set of size n ∈ ℕ is constant across Λ-measures whose leading n – 2 moments agree, and focus on inferring truncated sequences of moments. We provide a large class of functionals which can be extremised using finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal Metropolis–Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation study.</abstract><pub>INTERNATIONAL STATISTICAL INSTITUTE</pub><doi>10.3150/16-BEJ923</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2018-08, Vol.24 (3), p.2122-2153 |
issn | 1350-7265 |
language | eng |
recordid | cdi_crossref_primary_10_3150_16_BEJ923 |
source | JSTOR Journals and Primary Sources |
title | Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20non-parametric%20inference%20for%20%CE%9B-coalescents:%20Posterior%20consistency%20and%20a%20parametric%20method&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=KOSKELA,%20JERE&rft.date=2018-08-01&rft.volume=24&rft.issue=3&rft.spage=2122&rft.epage=2153&rft.pages=2122-2153&rft.issn=1350-7265&rft_id=info:doi/10.3150/16-BEJ923&rft_dat=%3Cjstor_cross%3E26492063%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-e45e0907cccadbc7d6c58255fca6d67bed1e666857373f132ebc1c8937b06a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26492063&rfr_iscdi=true |