Loading…
Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning
Saved in:
Published in: | Computer modeling in engineering & sciences 2023, Vol.135 (2), p.1521-1538 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c240t-498907fab50152a1337952d40d8c4e34fef91c04436fe5ba20bfb3ba24d545d73 |
container_end_page | 1538 |
container_issue | 2 |
container_start_page | 1521 |
container_title | Computer modeling in engineering & sciences |
container_volume | 135 |
creator | Li, Zihang Wang, Zexin Wang, Zi Qin, Zijun Liu, Feng Tan, Liming Jin, Xiaochao Fan, Xueling Huang, Lan |
description | |
doi_str_mv | 10.32604/cmes.2022.021639 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_32604_cmes_2022_021639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_32604_cmes_2022_021639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-498907fab50152a1337952d40d8c4e34fef91c04436fe5ba20bfb3ba24d545d73</originalsourceid><addsrcrecordid>eNotkM1OwzAQhH0AiVJ4AG5-gZT1T9LmCFWhSAWEWs6R46wTQ-pUtoPatyehXGYOsxrtfITcMZgJnoG813sMMw6cz4CzTOQXZMJSniUsheyKXIfwBSAyscgn5PjRKxetOVlX023X2mrUPtrO0W306OrYoBtD6-ib1d_YJo8q4HDWH9Crtu1Ogf5YRde2bpJd47u-bg59pKvjkNs9ukiVq-ir0o11SDeo_Nh3Qy6NagPe_vuUfD6tdst1snl_flk-bBLNJcRE5osc5kaVKQwTFBNinqe8klAttEQhDZqcaZBSZAbTUnEoTSkGl1Uq02oupoSde7XvQvBoisPwlfKngkHxh6sYcRUjruKMS_wC499jGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning</title><source>Publicly Available Content Database</source><creator>Li, Zihang ; Wang, Zexin ; Wang, Zi ; Qin, Zijun ; Liu, Feng ; Tan, Liming ; Jin, Xiaochao ; Fan, Xueling ; Huang, Lan</creator><creatorcontrib>Li, Zihang ; Wang, Zexin ; Wang, Zi ; Qin, Zijun ; Liu, Feng ; Tan, Liming ; Jin, Xiaochao ; Fan, Xueling ; Huang, Lan</creatorcontrib><identifier>ISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2022.021639</identifier><language>eng</language><ispartof>Computer modeling in engineering & sciences, 2023, Vol.135 (2), p.1521-1538</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-498907fab50152a1337952d40d8c4e34fef91c04436fe5ba20bfb3ba24d545d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Zihang</creatorcontrib><creatorcontrib>Wang, Zexin</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Qin, Zijun</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Tan, Liming</creatorcontrib><creatorcontrib>Jin, Xiaochao</creatorcontrib><creatorcontrib>Fan, Xueling</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><title>Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning</title><title>Computer modeling in engineering & sciences</title><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhH0AiVJ4AG5-gZT1T9LmCFWhSAWEWs6R46wTQ-pUtoPatyehXGYOsxrtfITcMZgJnoG813sMMw6cz4CzTOQXZMJSniUsheyKXIfwBSAyscgn5PjRKxetOVlX023X2mrUPtrO0W306OrYoBtD6-ib1d_YJo8q4HDWH9Crtu1Ogf5YRde2bpJd47u-bg59pKvjkNs9ukiVq-ir0o11SDeo_Nh3Qy6NagPe_vuUfD6tdst1snl_flk-bBLNJcRE5osc5kaVKQwTFBNinqe8klAttEQhDZqcaZBSZAbTUnEoTSkGl1Uq02oupoSde7XvQvBoisPwlfKngkHxh6sYcRUjruKMS_wC499jGA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Zihang</creator><creator>Wang, Zexin</creator><creator>Wang, Zi</creator><creator>Qin, Zijun</creator><creator>Liu, Feng</creator><creator>Tan, Liming</creator><creator>Jin, Xiaochao</creator><creator>Fan, Xueling</creator><creator>Huang, Lan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning</title><author>Li, Zihang ; Wang, Zexin ; Wang, Zi ; Qin, Zijun ; Liu, Feng ; Tan, Liming ; Jin, Xiaochao ; Fan, Xueling ; Huang, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-498907fab50152a1337952d40d8c4e34fef91c04436fe5ba20bfb3ba24d545d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Li, Zihang</creatorcontrib><creatorcontrib>Wang, Zexin</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Qin, Zijun</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Tan, Liming</creatorcontrib><creatorcontrib>Jin, Xiaochao</creatorcontrib><creatorcontrib>Fan, Xueling</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><collection>CrossRef</collection><jtitle>Computer modeling in engineering & sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zihang</au><au>Wang, Zexin</au><au>Wang, Zi</au><au>Qin, Zijun</au><au>Liu, Feng</au><au>Tan, Liming</au><au>Jin, Xiaochao</au><au>Fan, Xueling</au><au>Huang, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning</atitle><jtitle>Computer modeling in engineering & sciences</jtitle><date>2023</date><risdate>2023</risdate><volume>135</volume><issue>2</issue><spage>1521</spage><epage>1538</epage><pages>1521-1538</pages><issn>1526-1506</issn><doi>10.32604/cmes.2022.021639</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-1506 |
ispartof | Computer modeling in engineering & sciences, 2023, Vol.135 (2), p.1521-1538 |
issn | 1526-1506 |
language | eng |
recordid | cdi_crossref_primary_10_32604_cmes_2022_021639 |
source | Publicly Available Content Database |
title | Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Solid%20Solution%20Strengthening%20in%20Nickel-Based%20Superalloys%20via%20High-Throughput%20Experiment%20and%20Machine%20Learning&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Li,%20Zihang&rft.date=2023&rft.volume=135&rft.issue=2&rft.spage=1521&rft.epage=1538&rft.pages=1521-1538&rft.issn=1526-1506&rft_id=info:doi/10.32604/cmes.2022.021639&rft_dat=%3Ccrossref%3E10_32604_cmes_2022_021639%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-498907fab50152a1337952d40d8c4e34fef91c04436fe5ba20bfb3ba24d545d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |