Loading…

Hydrolat of Helichrysum Italicum promotes tissue regeneration during wound healing

Wound healing is a dynamic process involving different cell types with distinct roles according to the stages of healing. Fibroblasts and stem cells actively participate in tissue regeneration. A proper stimulation could contribute to enhance wound healing process-es. Helichrysum italicum (H. italic...

Full description

Saved in:
Bibliographic Details
Published in:Physiological research 2023, p.809-818
Main Authors: Serra, D, Bellu, E, Garroni, G, Cruciani, S, Sarais, G, Dessì, D, Pashchenko, A, Satta, R, Montesu, MA, Amler, E, Floris, M, Maioli, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wound healing is a dynamic process involving different cell types with distinct roles according to the stages of healing. Fibroblasts and stem cells actively participate in tissue regeneration. A proper stimulation could contribute to enhance wound healing process-es. Helichrysum italicum (H. italicum) is a medical plant well described for its pharmacological, antimicrobial, and anti-inflammatory activities. Aim of the present work was to examine the effect of the hydrolat derivate from H. italicum on stem cells isolated from skin and fibroblasts in vitro in presence or absence of tissue damage. The viability and proliferation of all cell types cultured in dif-ferent conditions were analyzed by MTT and BrdU assays. Cell proliferation after wound was analyzed with scratch test. Also, the expression of the main genes involved in tissue repair was evaluated by RT-qPCR analysis. Here we describe the capability of hy-drolat of H. italicum to promote tissue regeneration after scratch test both in stem cells and in fibroblasts. Moreover, the gene ex-pression analysis revealed that, hydrolat of H. italicum is also able to enhance stemness related. In conclusion our results are en-couraging, highlighting novel regenerative properties of hydrolat of H. italicum and paving the way for future application of this wasting product in accelerating wound healing.
ISSN:0862-8408
1802-9973
DOI:10.33549/physiolres.935101