Loading…

Formation and properties of metallic atomic chains and wires

We discuss the current state of a promising area of modern physics, the study of the physical properties of metal nanowires and atomic chains. One-dimensional nanostructures are attractive because of both the promise of their practical applications and the possibility of using them to test various t...

Full description

Saved in:
Bibliographic Details
Published in:Physics Uspekhi 2021-07, Vol.64 (7), p.671-701
Main Authors: Syromyatnikov, A G, Kolesnikov, S V, Saletsky, A M, Klavsyuk, A L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93
cites cdi_FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93
container_end_page 701
container_issue 7
container_start_page 671
container_title Physics Uspekhi
container_volume 64
creator Syromyatnikov, A G
Kolesnikov, S V
Saletsky, A M
Klavsyuk, A L
description We discuss the current state of a promising area of modern physics, the study of the physical properties of metal nanowires and atomic chains. One-dimensional nanostructures are attractive because of both the promise of their practical applications and the possibility of using them to test various theoretical models and approaches by comparing theoretical results with experimental data. We describe experimental conditions under which metal nanowires form on metal and semiconductor surfaces. We give special attention to theoretical models describing the scenario of nanowire growth on various surfaces. We analyze the main experimentally determined factors that affect the distribution of nanowire lengths. We show that the distribution of nanowire lengths on metal and semiconductor surfaces depends not only on external parameters but also on the formation time. We consider the magnetic properties of finite-length atomic chains located on the surfaces of metal and semiconductor crystals. We demonstrate a correlation among the structural, electronic, and magnetic properties of nanowires. We elucidate the effect that nanowires exert on the electronic properties of the surface on which they form. The nature of edge states is explained. The electron states of nanowire atoms are shown to be sensitive to the nanowire length. We discuss the Rashba effect for metal nanowires on a semiconductor surface and analyze how the exchange energy between atoms and the magnetic anisotropy energy affect the macroscopic characteristics of nanowires, such as their critical temperature and the time of spontaneous magnetization reversal.
doi_str_mv 10.3367/UFNe.2020.06.038789
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3367_UFNe_2020_06_038789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574788862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKu_wMuC510nSTeTBS9SrApFL_YckjSLKd3NmmwR_72pK3jz9Obw3puZj5BrChXnAm83qxdXMWBQgaiAS5TNCZnRhZDlAiWc5hkEL1GK5pxcpLQDAEZrnJG7VYidHn3oC91viyGGwcXRu1SEtujcqPd7bws9hi6Lfde-Tz_GTx9duiRnrd4nd_Wrc7JZPbwtn8r16-Pz8n5dWk5xLM2WYtuYVm4RuGDAG45oDEjqkDOpHTpZCwloGssMZxq1RWrr2rTOLEzD5-Rm6s3nfRxcGtUuHGKfVypWY_5QSsGyi08uG0NK0bVqiL7T8UtRUEdM6ohJHTEpEGrClFO3U8qH4a_2v8Q3aJtpDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574788862</pqid></control><display><type>article</type><title>Formation and properties of metallic atomic chains and wires</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Syromyatnikov, A G ; Kolesnikov, S V ; Saletsky, A M ; Klavsyuk, A L</creator><creatorcontrib>Syromyatnikov, A G ; Kolesnikov, S V ; Saletsky, A M ; Klavsyuk, A L</creatorcontrib><description>We discuss the current state of a promising area of modern physics, the study of the physical properties of metal nanowires and atomic chains. One-dimensional nanostructures are attractive because of both the promise of their practical applications and the possibility of using them to test various theoretical models and approaches by comparing theoretical results with experimental data. We describe experimental conditions under which metal nanowires form on metal and semiconductor surfaces. We give special attention to theoretical models describing the scenario of nanowire growth on various surfaces. We analyze the main experimentally determined factors that affect the distribution of nanowire lengths. We show that the distribution of nanowire lengths on metal and semiconductor surfaces depends not only on external parameters but also on the formation time. We consider the magnetic properties of finite-length atomic chains located on the surfaces of metal and semiconductor crystals. We demonstrate a correlation among the structural, electronic, and magnetic properties of nanowires. We elucidate the effect that nanowires exert on the electronic properties of the surface on which they form. The nature of edge states is explained. The electron states of nanowire atoms are shown to be sensitive to the nanowire length. We discuss the Rashba effect for metal nanowires on a semiconductor surface and analyze how the exchange energy between atoms and the magnetic anisotropy energy affect the macroscopic characteristics of nanowires, such as their critical temperature and the time of spontaneous magnetization reversal.</description><identifier>ISSN: 1063-7869</identifier><identifier>EISSN: 1468-4780</identifier><identifier>DOI: 10.3367/UFNe.2020.06.038789</identifier><language>eng</language><publisher>London: Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences</publisher><subject>atomic wire ; Chains ; Critical temperature ; Crystal structure ; edge state ; Electron states ; epitaxial growth ; Magnetic anisotropy ; Magnetic properties ; Magnetization reversal ; metallic chain ; nanomagnetism ; Nanowires ; Physical properties ; quantum conductivity ; Rashba effect ; Semiconductor crystals ; spintronics</subject><ispartof>Physics Uspekhi, 2021-07, Vol.64 (7), p.671-701</ispartof><rights>2021 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences</rights><rights>Copyright IOP Publishing Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93</citedby><cites>FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Syromyatnikov, A G</creatorcontrib><creatorcontrib>Kolesnikov, S V</creatorcontrib><creatorcontrib>Saletsky, A M</creatorcontrib><creatorcontrib>Klavsyuk, A L</creatorcontrib><title>Formation and properties of metallic atomic chains and wires</title><title>Physics Uspekhi</title><addtitle>Phys. – Usp</addtitle><description>We discuss the current state of a promising area of modern physics, the study of the physical properties of metal nanowires and atomic chains. One-dimensional nanostructures are attractive because of both the promise of their practical applications and the possibility of using them to test various theoretical models and approaches by comparing theoretical results with experimental data. We describe experimental conditions under which metal nanowires form on metal and semiconductor surfaces. We give special attention to theoretical models describing the scenario of nanowire growth on various surfaces. We analyze the main experimentally determined factors that affect the distribution of nanowire lengths. We show that the distribution of nanowire lengths on metal and semiconductor surfaces depends not only on external parameters but also on the formation time. We consider the magnetic properties of finite-length atomic chains located on the surfaces of metal and semiconductor crystals. We demonstrate a correlation among the structural, electronic, and magnetic properties of nanowires. We elucidate the effect that nanowires exert on the electronic properties of the surface on which they form. The nature of edge states is explained. The electron states of nanowire atoms are shown to be sensitive to the nanowire length. We discuss the Rashba effect for metal nanowires on a semiconductor surface and analyze how the exchange energy between atoms and the magnetic anisotropy energy affect the macroscopic characteristics of nanowires, such as their critical temperature and the time of spontaneous magnetization reversal.</description><subject>atomic wire</subject><subject>Chains</subject><subject>Critical temperature</subject><subject>Crystal structure</subject><subject>edge state</subject><subject>Electron states</subject><subject>epitaxial growth</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Magnetization reversal</subject><subject>metallic chain</subject><subject>nanomagnetism</subject><subject>Nanowires</subject><subject>Physical properties</subject><subject>quantum conductivity</subject><subject>Rashba effect</subject><subject>Semiconductor crystals</subject><subject>spintronics</subject><issn>1063-7869</issn><issn>1468-4780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKu_wMuC510nSTeTBS9SrApFL_YckjSLKd3NmmwR_72pK3jz9Obw3puZj5BrChXnAm83qxdXMWBQgaiAS5TNCZnRhZDlAiWc5hkEL1GK5pxcpLQDAEZrnJG7VYidHn3oC91viyGGwcXRu1SEtujcqPd7bws9hi6Lfde-Tz_GTx9duiRnrd4nd_Wrc7JZPbwtn8r16-Pz8n5dWk5xLM2WYtuYVm4RuGDAG45oDEjqkDOpHTpZCwloGssMZxq1RWrr2rTOLEzD5-Rm6s3nfRxcGtUuHGKfVypWY_5QSsGyi08uG0NK0bVqiL7T8UtRUEdM6ohJHTEpEGrClFO3U8qH4a_2v8Q3aJtpDg</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Syromyatnikov, A G</creator><creator>Kolesnikov, S V</creator><creator>Saletsky, A M</creator><creator>Klavsyuk, A L</creator><general>Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202107</creationdate><title>Formation and properties of metallic atomic chains and wires</title><author>Syromyatnikov, A G ; Kolesnikov, S V ; Saletsky, A M ; Klavsyuk, A L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>atomic wire</topic><topic>Chains</topic><topic>Critical temperature</topic><topic>Crystal structure</topic><topic>edge state</topic><topic>Electron states</topic><topic>epitaxial growth</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Magnetization reversal</topic><topic>metallic chain</topic><topic>nanomagnetism</topic><topic>Nanowires</topic><topic>Physical properties</topic><topic>quantum conductivity</topic><topic>Rashba effect</topic><topic>Semiconductor crystals</topic><topic>spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syromyatnikov, A G</creatorcontrib><creatorcontrib>Kolesnikov, S V</creatorcontrib><creatorcontrib>Saletsky, A M</creatorcontrib><creatorcontrib>Klavsyuk, A L</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics Uspekhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syromyatnikov, A G</au><au>Kolesnikov, S V</au><au>Saletsky, A M</au><au>Klavsyuk, A L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation and properties of metallic atomic chains and wires</atitle><jtitle>Physics Uspekhi</jtitle><addtitle>Phys. – Usp</addtitle><date>2021-07</date><risdate>2021</risdate><volume>64</volume><issue>7</issue><spage>671</spage><epage>701</epage><pages>671-701</pages><issn>1063-7869</issn><eissn>1468-4780</eissn><abstract>We discuss the current state of a promising area of modern physics, the study of the physical properties of metal nanowires and atomic chains. One-dimensional nanostructures are attractive because of both the promise of their practical applications and the possibility of using them to test various theoretical models and approaches by comparing theoretical results with experimental data. We describe experimental conditions under which metal nanowires form on metal and semiconductor surfaces. We give special attention to theoretical models describing the scenario of nanowire growth on various surfaces. We analyze the main experimentally determined factors that affect the distribution of nanowire lengths. We show that the distribution of nanowire lengths on metal and semiconductor surfaces depends not only on external parameters but also on the formation time. We consider the magnetic properties of finite-length atomic chains located on the surfaces of metal and semiconductor crystals. We demonstrate a correlation among the structural, electronic, and magnetic properties of nanowires. We elucidate the effect that nanowires exert on the electronic properties of the surface on which they form. The nature of edge states is explained. The electron states of nanowire atoms are shown to be sensitive to the nanowire length. We discuss the Rashba effect for metal nanowires on a semiconductor surface and analyze how the exchange energy between atoms and the magnetic anisotropy energy affect the macroscopic characteristics of nanowires, such as their critical temperature and the time of spontaneous magnetization reversal.</abstract><cop>London</cop><pub>Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences</pub><doi>10.3367/UFNe.2020.06.038789</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7869
ispartof Physics Uspekhi, 2021-07, Vol.64 (7), p.671-701
issn 1063-7869
1468-4780
language eng
recordid cdi_crossref_primary_10_3367_UFNe_2020_06_038789
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects atomic wire
Chains
Critical temperature
Crystal structure
edge state
Electron states
epitaxial growth
Magnetic anisotropy
Magnetic properties
Magnetization reversal
metallic chain
nanomagnetism
Nanowires
Physical properties
quantum conductivity
Rashba effect
Semiconductor crystals
spintronics
title Formation and properties of metallic atomic chains and wires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20and%20properties%20of%20metallic%20atomic%20chains%20and%20wires&rft.jtitle=Physics%20Uspekhi&rft.au=Syromyatnikov,%20A%20G&rft.date=2021-07&rft.volume=64&rft.issue=7&rft.spage=671&rft.epage=701&rft.pages=671-701&rft.issn=1063-7869&rft.eissn=1468-4780&rft_id=info:doi/10.3367/UFNe.2020.06.038789&rft_dat=%3Cproquest_cross%3E2574788862%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-bd17f9bf8d70362039377bb081e7328ae7e856807b9c2b32a7ac71c55bfeb4b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2574788862&rft_id=info:pmid/&rfr_iscdi=true