Loading…

Sensitivity Analysis of Common Input Parameters in Tools for Modeling Energy in Homes

Energy models of buildings can be developed and used for analysis of energy consumption. A model offers the opportunity to simulate a building under specific conditions for analysis of energy efficiency measures or optimum design. Due to the great amount of information needed to develop an energy mo...

Full description

Saved in:
Bibliographic Details
Published in:American journal of undergraduate research 2016-06, Vol.13 (2)
Main Authors: Tabban, Sheikh Tijan, Fumo, Nelson
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Energy models of buildings can be developed and used for analysis of energy consumption. A model offers the opportunity to simulate a building under specific conditions for analysis of energy efficiency measures or optimum design. Due to the great amount of information needed to develop an energy model of a building, the number of inputs can be reduced by making variable the most relevant input parameters and making the others to take common or standard values. In this study, an analysis of input parameters required by computational tools to estimate energy consumption in homes was done in two stages. In the first stage, common input parameters were identified for three software and three webtools based on the criteria that the input parameter should be common for at least two software and at least one webtool. In the second stage, a sensitivity analysis was performed on the inputs identified in the first stage. The software BEopt, developed by the National Renewable Energy Laboratory, was used as the source of typical input parameters to be compared, and to perform the simulations for the sensitivity analysis. The base or reference model to perform simulations for the sensitivity analysis corresponds to a model developed with information from a research house located on the campus of the University of Texas at Tyler and default inputs for the BEopt B-10 reference benchmark. Results show that besides the location, and consequently the weather, common parameters are building orientation, air leakage, space conditioning settings, space conditioning schedule, water heating equipment, and terrain. Among these parameters, the sensitivity analysis identified the largest variations in energy consumption for variations on space conditioning schedule (heating and cooling setpoints), followed by the type of water heating equipment. KEYWORDS: Residential Buildings; Energy Consumption; Energy Analysis; Input Parameters; Building Simulation; Source Energy
ISSN:1536-4585
2375-8732
DOI:10.33697/ajur.2016.013