Loading…
Numerical Simulations of the Nonlinear Interaction of a Bubble Cloud and a High Intensity Focused Ultrasound Field
We studied the effects of a small bubble cloud located at the pre-focal area of a high-intensity focused ultrasound field. Our objective is to show that bubbles can modify the bioeffects of an ultrasound treatment in muscle tissue. We model a three-dimensional ultrasound field in an idealized config...
Saved in:
Published in: | Acoustics (Basel, Switzerland) Switzerland), 2019-12, Vol.1 (4), p.825-836 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied the effects of a small bubble cloud located at the pre-focal area of a high-intensity focused ultrasound field. Our objective is to show that bubbles can modify the bioeffects of an ultrasound treatment in muscle tissue. We model a three-dimensional ultrasound field in an idealized configuration of real operating conditions. Simulations are performed using a combined method based on the Khokhlov-Zabolotskaya-Kuznetsov equation, describing the ultrasound propagation, and a Rayleigh-Plesset equation, modeling the bubble oscillations. The nonlinear interaction of the ultrasound field and the bubble oscillations is considered. Results with and without bubbles for different void fractions of the cloud and different acoustic powers are compared. The cloud induces scattering, nonlinear distortion, and shielding of ultrasound, which increase the mechanical index in the pre-focal zone, shift the location, reduce the size, and modify the shape of the volume of tissue of high mechanical index values, and lower the pressure at the intended focus considerably. Although some hypothesis and parameters used in the models do not fit the real HIFU situations, the simulation results suggest that the effects caused by a bubble cloud located in the pre-focal area should be considered and monitored to ensure the safety of high-intensity focused ultrasound treatments. |
---|---|
ISSN: | 2624-599X 2624-599X |
DOI: | 10.3390/acoustics1040049 |