Loading…

Use of Drones for Trough Reading, Animal Counting, and Production Monitoring in Feedlot Systems

In line with the concept of precision agriculture, this study aimed to validate the use of digital aerial images captured using a remotely piloted aircraft (RPA) for collecting zootechnical data on cattle feedlot systems in a tropical environment. Images were captured on 21 non-consecutive days in 1...

Full description

Saved in:
Bibliographic Details
Published in:AgriEngineering 2024-12, Vol.6 (4), p.4460-4475
Main Authors: Bastos, Kécia M., Barcelos, Jardel P., Orioli, Guilherme F., Nascimento, Sheila T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c265t-891abbce448762cd2cd69dd5b3d6d72a5559b40f36e906927878c0a50374934d3
container_end_page 4475
container_issue 4
container_start_page 4460
container_title AgriEngineering
container_volume 6
creator Bastos, Kécia M.
Barcelos, Jardel P.
Orioli, Guilherme F.
Nascimento, Sheila T.
description In line with the concept of precision agriculture, this study aimed to validate the use of digital aerial images captured using a remotely piloted aircraft (RPA) for collecting zootechnical data on cattle feedlot systems in a tropical environment. Images were captured on 21 non-consecutive days in 110 pens with up to 150 animals each. Conventional and RPA-based methods were adopted to determine animal behavior, feed trough levels, animal counts, and pen conditions. Data analysis revealed almost perfect agreement (kappa coefficient = 0.901) between trough readings taken by conventional and RPA methods as well as substantial agreement for fecal score (kappa coefficient = 0.785) and surface conditions (kappa coefficient = 0.737). However, animal counts and water quality scores showed only fair agreement, suggesting challenges in using RPA for these specific tasks. The results indicated that RPA represents a viable alternative to conventional methods for monitoring zootechnical indices in feedlots, offering benefits in terms of accuracy, efficiency, and cost-effectiveness. The implementation of RPA-based methods holds potential for improving animal management, welfare, and yield in feedlot systems.
doi_str_mv 10.3390/agriengineering6040253
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_agriengineering6040253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0b2b8d7dcac9475da113191f520ca8a9</doaj_id><sourcerecordid>3149494342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-891abbce448762cd2cd69dd5b3d6d72a5559b40f36e906927878c0a50374934d3</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUvsXJODV1Wy-dnMs1Wqhomh7Dtkku6Zsk5rsHvrvTVsRDzIDM_N4vPdgsuy6gHcYc3gv22CNa60zJljXMkggovgsGyGGSF6m6_zPfplNYtxAmDiQUM5HmVhHA3wDHoJ3JoLGB7AKfmg_wbuROinegqmzW9mBmR9cfwSk0-AteD2o3noHXryzvT-4A-vA3Bjd-R587GNvtvEqu2hkF83kZ46z9fxxNXvOl69Pi9l0mSvEaJ9XvJB1rQwhVcmQ0qkZ15rWWDNdIkkp5TWBDWaGQ8ZRWZWVgpJCXBKOicbjbHHS1V5uxC6kyGEvvLTiCPjQChl6qzojYI3qSpdaScVJSbUsClzwoqEIKllJnrRuTlq74L8GE3ux8UNwKb7ABeGpMEGJxU4sFXyMwTS_rgUUh9-I_3-DvwHaE4W_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149494342</pqid></control><display><type>article</type><title>Use of Drones for Trough Reading, Animal Counting, and Production Monitoring in Feedlot Systems</title><source>Publicly Available Content (ProQuest)</source><creator>Bastos, Kécia M. ; Barcelos, Jardel P. ; Orioli, Guilherme F. ; Nascimento, Sheila T.</creator><creatorcontrib>Bastos, Kécia M. ; Barcelos, Jardel P. ; Orioli, Guilherme F. ; Nascimento, Sheila T.</creatorcontrib><description>In line with the concept of precision agriculture, this study aimed to validate the use of digital aerial images captured using a remotely piloted aircraft (RPA) for collecting zootechnical data on cattle feedlot systems in a tropical environment. Images were captured on 21 non-consecutive days in 110 pens with up to 150 animals each. Conventional and RPA-based methods were adopted to determine animal behavior, feed trough levels, animal counts, and pen conditions. Data analysis revealed almost perfect agreement (kappa coefficient = 0.901) between trough readings taken by conventional and RPA methods as well as substantial agreement for fecal score (kappa coefficient = 0.785) and surface conditions (kappa coefficient = 0.737). However, animal counts and water quality scores showed only fair agreement, suggesting challenges in using RPA for these specific tasks. The results indicated that RPA represents a viable alternative to conventional methods for monitoring zootechnical indices in feedlots, offering benefits in terms of accuracy, efficiency, and cost-effectiveness. The implementation of RPA-based methods holds potential for improving animal management, welfare, and yield in feedlot systems.</description><identifier>ISSN: 2624-7402</identifier><identifier>EISSN: 2624-7402</identifier><identifier>DOI: 10.3390/agriengineering6040253</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aerial imaging ; Agricultural aircraft ; Aircraft ; Animal behavior ; Animal welfare ; beef cattle ; Cattle ; Climate ; Cost effectiveness ; Data analysis ; Digital imaging ; Drone aircraft ; Drones ; Factory farming ; Farms ; feedlot ; Feedlots ; Feeds ; Livestock ; Monitoring methods ; Precision farming ; Remote monitoring ; Remotely piloted aircraft ; RPA ; Tropical environment ; Tropical environments ; Water quality</subject><ispartof>AgriEngineering, 2024-12, Vol.6 (4), p.4460-4475</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-891abbce448762cd2cd69dd5b3d6d72a5559b40f36e906927878c0a50374934d3</cites><orcidid>0000-0003-0020-6968 ; 0009-0004-8464-8492 ; 0000-0001-8396-753X ; 0009-0002-1375-3071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149494342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149494342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Bastos, Kécia M.</creatorcontrib><creatorcontrib>Barcelos, Jardel P.</creatorcontrib><creatorcontrib>Orioli, Guilherme F.</creatorcontrib><creatorcontrib>Nascimento, Sheila T.</creatorcontrib><title>Use of Drones for Trough Reading, Animal Counting, and Production Monitoring in Feedlot Systems</title><title>AgriEngineering</title><description>In line with the concept of precision agriculture, this study aimed to validate the use of digital aerial images captured using a remotely piloted aircraft (RPA) for collecting zootechnical data on cattle feedlot systems in a tropical environment. Images were captured on 21 non-consecutive days in 110 pens with up to 150 animals each. Conventional and RPA-based methods were adopted to determine animal behavior, feed trough levels, animal counts, and pen conditions. Data analysis revealed almost perfect agreement (kappa coefficient = 0.901) between trough readings taken by conventional and RPA methods as well as substantial agreement for fecal score (kappa coefficient = 0.785) and surface conditions (kappa coefficient = 0.737). However, animal counts and water quality scores showed only fair agreement, suggesting challenges in using RPA for these specific tasks. The results indicated that RPA represents a viable alternative to conventional methods for monitoring zootechnical indices in feedlots, offering benefits in terms of accuracy, efficiency, and cost-effectiveness. The implementation of RPA-based methods holds potential for improving animal management, welfare, and yield in feedlot systems.</description><subject>aerial imaging</subject><subject>Agricultural aircraft</subject><subject>Aircraft</subject><subject>Animal behavior</subject><subject>Animal welfare</subject><subject>beef cattle</subject><subject>Cattle</subject><subject>Climate</subject><subject>Cost effectiveness</subject><subject>Data analysis</subject><subject>Digital imaging</subject><subject>Drone aircraft</subject><subject>Drones</subject><subject>Factory farming</subject><subject>Farms</subject><subject>feedlot</subject><subject>Feedlots</subject><subject>Feeds</subject><subject>Livestock</subject><subject>Monitoring methods</subject><subject>Precision farming</subject><subject>Remote monitoring</subject><subject>Remotely piloted aircraft</subject><subject>RPA</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Water quality</subject><issn>2624-7402</issn><issn>2624-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1LAzEQXUTBUvsXJODV1Wy-dnMs1Wqhomh7Dtkku6Zsk5rsHvrvTVsRDzIDM_N4vPdgsuy6gHcYc3gv22CNa60zJljXMkggovgsGyGGSF6m6_zPfplNYtxAmDiQUM5HmVhHA3wDHoJ3JoLGB7AKfmg_wbuROinegqmzW9mBmR9cfwSk0-AteD2o3noHXryzvT-4A-vA3Bjd-R587GNvtvEqu2hkF83kZ46z9fxxNXvOl69Pi9l0mSvEaJ9XvJB1rQwhVcmQ0qkZ15rWWDNdIkkp5TWBDWaGQ8ZRWZWVgpJCXBKOicbjbHHS1V5uxC6kyGEvvLTiCPjQChl6qzojYI3qSpdaScVJSbUsClzwoqEIKllJnrRuTlq74L8GE3ux8UNwKb7ABeGpMEGJxU4sFXyMwTS_rgUUh9-I_3-DvwHaE4W_</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Bastos, Kécia M.</creator><creator>Barcelos, Jardel P.</creator><creator>Orioli, Guilherme F.</creator><creator>Nascimento, Sheila T.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0020-6968</orcidid><orcidid>https://orcid.org/0009-0004-8464-8492</orcidid><orcidid>https://orcid.org/0000-0001-8396-753X</orcidid><orcidid>https://orcid.org/0009-0002-1375-3071</orcidid></search><sort><creationdate>20241201</creationdate><title>Use of Drones for Trough Reading, Animal Counting, and Production Monitoring in Feedlot Systems</title><author>Bastos, Kécia M. ; Barcelos, Jardel P. ; Orioli, Guilherme F. ; Nascimento, Sheila T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-891abbce448762cd2cd69dd5b3d6d72a5559b40f36e906927878c0a50374934d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aerial imaging</topic><topic>Agricultural aircraft</topic><topic>Aircraft</topic><topic>Animal behavior</topic><topic>Animal welfare</topic><topic>beef cattle</topic><topic>Cattle</topic><topic>Climate</topic><topic>Cost effectiveness</topic><topic>Data analysis</topic><topic>Digital imaging</topic><topic>Drone aircraft</topic><topic>Drones</topic><topic>Factory farming</topic><topic>Farms</topic><topic>feedlot</topic><topic>Feedlots</topic><topic>Feeds</topic><topic>Livestock</topic><topic>Monitoring methods</topic><topic>Precision farming</topic><topic>Remote monitoring</topic><topic>Remotely piloted aircraft</topic><topic>RPA</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastos, Kécia M.</creatorcontrib><creatorcontrib>Barcelos, Jardel P.</creatorcontrib><creatorcontrib>Orioli, Guilherme F.</creatorcontrib><creatorcontrib>Nascimento, Sheila T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AgriEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastos, Kécia M.</au><au>Barcelos, Jardel P.</au><au>Orioli, Guilherme F.</au><au>Nascimento, Sheila T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Drones for Trough Reading, Animal Counting, and Production Monitoring in Feedlot Systems</atitle><jtitle>AgriEngineering</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><spage>4460</spage><epage>4475</epage><pages>4460-4475</pages><issn>2624-7402</issn><eissn>2624-7402</eissn><abstract>In line with the concept of precision agriculture, this study aimed to validate the use of digital aerial images captured using a remotely piloted aircraft (RPA) for collecting zootechnical data on cattle feedlot systems in a tropical environment. Images were captured on 21 non-consecutive days in 110 pens with up to 150 animals each. Conventional and RPA-based methods were adopted to determine animal behavior, feed trough levels, animal counts, and pen conditions. Data analysis revealed almost perfect agreement (kappa coefficient = 0.901) between trough readings taken by conventional and RPA methods as well as substantial agreement for fecal score (kappa coefficient = 0.785) and surface conditions (kappa coefficient = 0.737). However, animal counts and water quality scores showed only fair agreement, suggesting challenges in using RPA for these specific tasks. The results indicated that RPA represents a viable alternative to conventional methods for monitoring zootechnical indices in feedlots, offering benefits in terms of accuracy, efficiency, and cost-effectiveness. The implementation of RPA-based methods holds potential for improving animal management, welfare, and yield in feedlot systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriengineering6040253</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0020-6968</orcidid><orcidid>https://orcid.org/0009-0004-8464-8492</orcidid><orcidid>https://orcid.org/0000-0001-8396-753X</orcidid><orcidid>https://orcid.org/0009-0002-1375-3071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2624-7402
ispartof AgriEngineering, 2024-12, Vol.6 (4), p.4460-4475
issn 2624-7402
2624-7402
language eng
recordid cdi_crossref_primary_10_3390_agriengineering6040253
source Publicly Available Content (ProQuest)
subjects aerial imaging
Agricultural aircraft
Aircraft
Animal behavior
Animal welfare
beef cattle
Cattle
Climate
Cost effectiveness
Data analysis
Digital imaging
Drone aircraft
Drones
Factory farming
Farms
feedlot
Feedlots
Feeds
Livestock
Monitoring methods
Precision farming
Remote monitoring
Remotely piloted aircraft
RPA
Tropical environment
Tropical environments
Water quality
title Use of Drones for Trough Reading, Animal Counting, and Production Monitoring in Feedlot Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Drones%20for%20Trough%20Reading,%20Animal%20Counting,%20and%20Production%20Monitoring%20in%20Feedlot%20Systems&rft.jtitle=AgriEngineering&rft.au=Bastos,%20K%C3%A9cia%20M.&rft.date=2024-12-01&rft.volume=6&rft.issue=4&rft.spage=4460&rft.epage=4475&rft.pages=4460-4475&rft.issn=2624-7402&rft.eissn=2624-7402&rft_id=info:doi/10.3390/agriengineering6040253&rft_dat=%3Cproquest_doaj_%3E3149494342%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-891abbce448762cd2cd69dd5b3d6d72a5559b40f36e906927878c0a50374934d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149494342&rft_id=info:pmid/&rfr_iscdi=true