Loading…
Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions
For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, unde...
Saved in:
Published in: | AppliedMath 2022-03, Vol.2 (1), p.39-53 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 39 |
container_title | AppliedMath |
container_volume | 2 |
creator | Bishwal, Jaya P. N. |
description | For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance. |
doi_str_mv | 10.3390/appliedmath2010003 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_appliedmath2010003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_appliedmath2010003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3</originalsourceid><addsrcrecordid>eNplUEtOwzAUtBBIVKUXYOULBPxp4nhJS6FIRRUSrCPHfqaGtK78EkR23IEbchLCZ4HEakaj0cxoCDnl7ExKzc7Nft8EcFvTbgTjjDF5QEaiUDLTmunDP_yYTBCfBococyVVOSKPM0ip_3h7XyAC7OgsdjuHNHraboDedQYDvTWvYdtt6So8QxM2MTq6wDYMfTEh9TF9ey8D2gQtND1d1wjpBdyged9hiDs8IUfeNAiTXxyTh6vF_XyZrdbXN_OLVWa5Em2mLYBxmoNm1qhcTblwVrkaprksfamLMi9qLxSrHau5z60yhZQFlLmeAi-MHBPxk2tTREzgq30alqa-4qz6eqv6_5b8BC0VY4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</title><source>DOAJ Directory of Open Access Journals</source><creator>Bishwal, Jaya P. N.</creator><creatorcontrib>Bishwal, Jaya P. N.</creatorcontrib><description>For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2010003</identifier><language>eng</language><ispartof>AppliedMath, 2022-03, Vol.2 (1), p.39-53</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Bishwal, Jaya P. N.</creatorcontrib><title>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</title><title>AppliedMath</title><description>For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.</description><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplUEtOwzAUtBBIVKUXYOULBPxp4nhJS6FIRRUSrCPHfqaGtK78EkR23IEbchLCZ4HEakaj0cxoCDnl7ExKzc7Nft8EcFvTbgTjjDF5QEaiUDLTmunDP_yYTBCfBococyVVOSKPM0ip_3h7XyAC7OgsdjuHNHraboDedQYDvTWvYdtt6So8QxM2MTq6wDYMfTEh9TF9ey8D2gQtND1d1wjpBdyged9hiDs8IUfeNAiTXxyTh6vF_XyZrdbXN_OLVWa5Em2mLYBxmoNm1qhcTblwVrkaprksfamLMi9qLxSrHau5z60yhZQFlLmeAi-MHBPxk2tTREzgq30alqa-4qz6eqv6_5b8BC0VY4M</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bishwal, Jaya P. N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</title><author>Bishwal, Jaya P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishwal, Jaya P. N.</creatorcontrib><collection>CrossRef</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishwal, Jaya P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</atitle><jtitle>AppliedMath</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>2</volume><issue>1</issue><spage>39</spage><epage>53</epage><pages>39-53</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.</abstract><doi>10.3390/appliedmath2010003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2022-03, Vol.2 (1), p.39-53 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_crossref_primary_10_3390_appliedmath2010003 |
source | DOAJ Directory of Open Access Journals |
title | Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berry%E2%80%93Esseen%20Bounds%20of%20the%20Quasi%20Maximum%20Likelihood%20Estimators%20for%20the%20Discretely%20Observed%20Diffusions&rft.jtitle=AppliedMath&rft.au=Bishwal,%20Jaya%20P.%20N.&rft.date=2022-03-01&rft.volume=2&rft.issue=1&rft.spage=39&rft.epage=53&rft.pages=39-53&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2010003&rft_dat=%3Ccrossref%3E10_3390_appliedmath2010003%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |