Loading…

Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions

For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, unde...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2022-03, Vol.2 (1), p.39-53
Main Author: Bishwal, Jaya P. N.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3
container_end_page 53
container_issue 1
container_start_page 39
container_title AppliedMath
container_volume 2
creator Bishwal, Jaya P. N.
description For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.
doi_str_mv 10.3390/appliedmath2010003
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_appliedmath2010003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_appliedmath2010003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3</originalsourceid><addsrcrecordid>eNplUEtOwzAUtBBIVKUXYOULBPxp4nhJS6FIRRUSrCPHfqaGtK78EkR23IEbchLCZ4HEakaj0cxoCDnl7ExKzc7Nft8EcFvTbgTjjDF5QEaiUDLTmunDP_yYTBCfBococyVVOSKPM0ip_3h7XyAC7OgsdjuHNHraboDedQYDvTWvYdtt6So8QxM2MTq6wDYMfTEh9TF9ey8D2gQtND1d1wjpBdyged9hiDs8IUfeNAiTXxyTh6vF_XyZrdbXN_OLVWa5Em2mLYBxmoNm1qhcTblwVrkaprksfamLMi9qLxSrHau5z60yhZQFlLmeAi-MHBPxk2tTREzgq30alqa-4qz6eqv6_5b8BC0VY4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</title><source>DOAJ Directory of Open Access Journals</source><creator>Bishwal, Jaya P. N.</creator><creatorcontrib>Bishwal, Jaya P. N.</creatorcontrib><description>For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2010003</identifier><language>eng</language><ispartof>AppliedMath, 2022-03, Vol.2 (1), p.39-53</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Bishwal, Jaya P. N.</creatorcontrib><title>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</title><title>AppliedMath</title><description>For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.</description><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplUEtOwzAUtBBIVKUXYOULBPxp4nhJS6FIRRUSrCPHfqaGtK78EkR23IEbchLCZ4HEakaj0cxoCDnl7ExKzc7Nft8EcFvTbgTjjDF5QEaiUDLTmunDP_yYTBCfBococyVVOSKPM0ip_3h7XyAC7OgsdjuHNHraboDedQYDvTWvYdtt6So8QxM2MTq6wDYMfTEh9TF9ey8D2gQtND1d1wjpBdyged9hiDs8IUfeNAiTXxyTh6vF_XyZrdbXN_OLVWa5Em2mLYBxmoNm1qhcTblwVrkaprksfamLMi9qLxSrHau5z60yhZQFlLmeAi-MHBPxk2tTREzgq30alqa-4qz6eqv6_5b8BC0VY4M</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bishwal, Jaya P. N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220301</creationdate><title>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</title><author>Bishwal, Jaya P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bishwal, Jaya P. N.</creatorcontrib><collection>CrossRef</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishwal, Jaya P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions</atitle><jtitle>AppliedMath</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>2</volume><issue>1</issue><spage>39</spage><epage>53</epage><pages>39-53</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.</abstract><doi>10.3390/appliedmath2010003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2022-03, Vol.2 (1), p.39-53
issn 2673-9909
2673-9909
language eng
recordid cdi_crossref_primary_10_3390_appliedmath2010003
source DOAJ Directory of Open Access Journals
title Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berry%E2%80%93Esseen%20Bounds%20of%20the%20Quasi%20Maximum%20Likelihood%20Estimators%20for%20the%20Discretely%20Observed%20Diffusions&rft.jtitle=AppliedMath&rft.au=Bishwal,%20Jaya%20P.%20N.&rft.date=2022-03-01&rft.volume=2&rft.issue=1&rft.spage=39&rft.epage=53&rft.pages=39-53&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2010003&rft_dat=%3Ccrossref%3E10_3390_appliedmath2010003%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-9ceead91e90ca757412dc7dbe4538f896856bf270bd0b1f5c7a6336e8594e16a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true