Loading…
Rotating Binaries
This paper investigates the behavior of rotating binaries. A rotation by r digits to the left of a binary number B exhibits in particular cases the divisibility l∣N1(B)·r+1, where l is the bit-length of B and N1(B) is the Hamming weight of B, that is the number of ones in B. The integer r is called...
Saved in:
Published in: | AppliedMath 2022-03, Vol.2 (1), p.104-117 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c172t-2df9850196a6c85b7971a3750d628677ac882ae9a19292c1243c9126bc78e7f83 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 104 |
container_title | AppliedMath |
container_volume | 2 |
creator | Gupta, Anant Aberkane, Idriss J. Ghosh, Sourangshu Abold, Adrian Rahn, Alexander Sultanow, Eldar |
description | This paper investigates the behavior of rotating binaries. A rotation by r digits to the left of a binary number B exhibits in particular cases the divisibility l∣N1(B)·r+1, where l is the bit-length of B and N1(B) is the Hamming weight of B, that is the number of ones in B. The integer r is called the left-rotational distance. We investigate the connection between this rotational distance, the length, and the Hamming weight of binary numbers. Moreover, we follow the question under which circumstances the above-mentioned divisibility is true. We have found out and will demonstrate that this divisibility occurs for kn+c cycles. |
doi_str_mv | 10.3390/appliedmath2010005 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_appliedmath2010005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_appliedmath2010005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-2df9850196a6c85b7971a3750d628677ac882ae9a19292c1243c9126bc78e7f83</originalsourceid><addsrcrecordid>eNplj01LAzEQhoMoWGoPXj35B1ZnJiaTOWpRKxQEac_LNJvVSD-WZC_-exU9CJ6e9_DwwmPMBcKVtQLXOgzbnLqdjm8ECADuyEzIs21EQI7_7FMzq_X9y6Dg2HKYmPOXw6hj3r9e3uW9lpzqmTnpdVvT7JdTs364X80XzfL58Wl-u2wiMo0Ndb0EByhefQxuw8Kolh10noJn1hgCaRJFIaGIdGOjIPlN5JC4D3Zq6Oc3lkOtJfXtUPJOy0eL0H53tf-77CdiA0Eh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rotating Binaries</title><source>DOAJ Directory of Open Access Journals</source><creator>Gupta, Anant ; Aberkane, Idriss J. ; Ghosh, Sourangshu ; Abold, Adrian ; Rahn, Alexander ; Sultanow, Eldar</creator><creatorcontrib>Gupta, Anant ; Aberkane, Idriss J. ; Ghosh, Sourangshu ; Abold, Adrian ; Rahn, Alexander ; Sultanow, Eldar</creatorcontrib><description>This paper investigates the behavior of rotating binaries. A rotation by r digits to the left of a binary number B exhibits in particular cases the divisibility l∣N1(B)·r+1, where l is the bit-length of B and N1(B) is the Hamming weight of B, that is the number of ones in B. The integer r is called the left-rotational distance. We investigate the connection between this rotational distance, the length, and the Hamming weight of binary numbers. Moreover, we follow the question under which circumstances the above-mentioned divisibility is true. We have found out and will demonstrate that this divisibility occurs for kn+c cycles.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2010005</identifier><language>eng</language><ispartof>AppliedMath, 2022-03, Vol.2 (1), p.104-117</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-2df9850196a6c85b7971a3750d628677ac882ae9a19292c1243c9126bc78e7f83</cites><orcidid>0000-0002-1309-6254 ; 0000-0002-2534-6978 ; 0000-0002-4198-9279 ; 0000-0003-1691-4790 ; 0000-0001-5257-2236 ; 0000-0001-9674-3789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Gupta, Anant</creatorcontrib><creatorcontrib>Aberkane, Idriss J.</creatorcontrib><creatorcontrib>Ghosh, Sourangshu</creatorcontrib><creatorcontrib>Abold, Adrian</creatorcontrib><creatorcontrib>Rahn, Alexander</creatorcontrib><creatorcontrib>Sultanow, Eldar</creatorcontrib><title>Rotating Binaries</title><title>AppliedMath</title><description>This paper investigates the behavior of rotating binaries. A rotation by r digits to the left of a binary number B exhibits in particular cases the divisibility l∣N1(B)·r+1, where l is the bit-length of B and N1(B) is the Hamming weight of B, that is the number of ones in B. The integer r is called the left-rotational distance. We investigate the connection between this rotational distance, the length, and the Hamming weight of binary numbers. Moreover, we follow the question under which circumstances the above-mentioned divisibility is true. We have found out and will demonstrate that this divisibility occurs for kn+c cycles.</description><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplj01LAzEQhoMoWGoPXj35B1ZnJiaTOWpRKxQEac_LNJvVSD-WZC_-exU9CJ6e9_DwwmPMBcKVtQLXOgzbnLqdjm8ECADuyEzIs21EQI7_7FMzq_X9y6Dg2HKYmPOXw6hj3r9e3uW9lpzqmTnpdVvT7JdTs364X80XzfL58Wl-u2wiMo0Ndb0EByhefQxuw8Kolh10noJn1hgCaRJFIaGIdGOjIPlN5JC4D3Zq6Oc3lkOtJfXtUPJOy0eL0H53tf-77CdiA0Eh</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Gupta, Anant</creator><creator>Aberkane, Idriss J.</creator><creator>Ghosh, Sourangshu</creator><creator>Abold, Adrian</creator><creator>Rahn, Alexander</creator><creator>Sultanow, Eldar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1309-6254</orcidid><orcidid>https://orcid.org/0000-0002-2534-6978</orcidid><orcidid>https://orcid.org/0000-0002-4198-9279</orcidid><orcidid>https://orcid.org/0000-0003-1691-4790</orcidid><orcidid>https://orcid.org/0000-0001-5257-2236</orcidid><orcidid>https://orcid.org/0000-0001-9674-3789</orcidid></search><sort><creationdate>20220301</creationdate><title>Rotating Binaries</title><author>Gupta, Anant ; Aberkane, Idriss J. ; Ghosh, Sourangshu ; Abold, Adrian ; Rahn, Alexander ; Sultanow, Eldar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-2df9850196a6c85b7971a3750d628677ac882ae9a19292c1243c9126bc78e7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Anant</creatorcontrib><creatorcontrib>Aberkane, Idriss J.</creatorcontrib><creatorcontrib>Ghosh, Sourangshu</creatorcontrib><creatorcontrib>Abold, Adrian</creatorcontrib><creatorcontrib>Rahn, Alexander</creatorcontrib><creatorcontrib>Sultanow, Eldar</creatorcontrib><collection>CrossRef</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Anant</au><au>Aberkane, Idriss J.</au><au>Ghosh, Sourangshu</au><au>Abold, Adrian</au><au>Rahn, Alexander</au><au>Sultanow, Eldar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotating Binaries</atitle><jtitle>AppliedMath</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>2</volume><issue>1</issue><spage>104</spage><epage>117</epage><pages>104-117</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>This paper investigates the behavior of rotating binaries. A rotation by r digits to the left of a binary number B exhibits in particular cases the divisibility l∣N1(B)·r+1, where l is the bit-length of B and N1(B) is the Hamming weight of B, that is the number of ones in B. The integer r is called the left-rotational distance. We investigate the connection between this rotational distance, the length, and the Hamming weight of binary numbers. Moreover, we follow the question under which circumstances the above-mentioned divisibility is true. We have found out and will demonstrate that this divisibility occurs for kn+c cycles.</abstract><doi>10.3390/appliedmath2010005</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1309-6254</orcidid><orcidid>https://orcid.org/0000-0002-2534-6978</orcidid><orcidid>https://orcid.org/0000-0002-4198-9279</orcidid><orcidid>https://orcid.org/0000-0003-1691-4790</orcidid><orcidid>https://orcid.org/0000-0001-5257-2236</orcidid><orcidid>https://orcid.org/0000-0001-9674-3789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2022-03, Vol.2 (1), p.104-117 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_crossref_primary_10_3390_appliedmath2010005 |
source | DOAJ Directory of Open Access Journals |
title | Rotating Binaries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotating%20Binaries&rft.jtitle=AppliedMath&rft.au=Gupta,%20Anant&rft.date=2022-03-01&rft.volume=2&rft.issue=1&rft.spage=104&rft.epage=117&rft.pages=104-117&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2010005&rft_dat=%3Ccrossref%3E10_3390_appliedmath2010005%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-2df9850196a6c85b7971a3750d628677ac882ae9a19292c1243c9126bc78e7f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |