Loading…
From Modelling Turbulence to General Systems Modelling
Complex adaptive and evolutionary systems can, at least in principle, be modelled in ways that are similar to modelling of complex mechanical (or physical) systems. While quantitative modelling of turbulent reacting flows has been developed over many decades due to availability of experimental data,...
Saved in:
Published in: | AppliedMath 2022-06, Vol.2 (2), p.247-260 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Complex adaptive and evolutionary systems can, at least in principle, be modelled in ways that are similar to modelling of complex mechanical (or physical) systems. While quantitative modelling of turbulent reacting flows has been developed over many decades due to availability of experimental data, modelling of complex evolutionary systems is still in its infancy and has huge potential for further development. This work analyses recent trends, points to the similarity of modelling approaches used in seemingly different areas, and suggests a basic classification for such approaches. Availability of data in the modern computerised world allows us to use tools previously developed in physics and applied mathematics in new domains of scientific inquiry that previously were not amendable by quantitative evaluation and modelling, while raising concerns about the associated ethical and legal issues. While the utility of big data has been repeatedly demonstrated in various practical applications, these applications, as far as we can judge, do not involve the scientific goal of conceptual modelling of emergent collective behaviour in complex evolutionary systems. |
---|---|
ISSN: | 2673-9909 2673-9909 |
DOI: | 10.3390/appliedmath2020015 |