Loading…
Measuring the Quality Factor in MEMS Devices
This paper demonstrates and compares different experimental techniques utilized to estimate the quality factor (Q) and natural frequency from non-contact measurements of Microelectromechanical Systems (MEMS) motions. The relative merits of those techniques are contrasted in Q factor estimation for a...
Saved in:
Published in: | Micromachines (Basel) 2015-12, Vol.6 (12), p.1935-1945 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper demonstrates and compares different experimental techniques utilized to estimate the quality factor (Q) and natural frequency from non-contact measurements of Microelectromechanical Systems (MEMS) motions. The relative merits of those techniques are contrasted in Q factor estimation for a cantilever beam MEMS actuator, operated in three configurations: free standing, arc-shaped, and s-shaped. It is found that damping estimation techniques that seek to minimize the deviation between the response of an “assumed” linear oscillator and the measured time-history of the motions are superior to those traditional techniques, such as logarithmic decrement and half-power bandwidth. Further, it is found that Q increases three-fold as the actuator contact with the substrate evolves from a line to an area. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi6121466 |