Loading…

Pore Structure Characterization of Undisturbed Weathered Crust Elution-Deposited Rare Earth Ore Based on X-ray Micro-CT Scanning

As an environmentally compliant hydrometallurgical process, in situ leaching is extensively used by the mining industry to recover rare earth from weathered crust elution-deposited rare earth ore. In the in situ leaching system, the pore structure plays a dominant role in the permeability of the rar...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2021-03, Vol.11 (3), p.236
Main Authors: Yin, Shenghua, Chen, Xun, Yan, Rongfu, Wang, Leiming
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As an environmentally compliant hydrometallurgical process, in situ leaching is extensively used by the mining industry to recover rare earth from weathered crust elution-deposited rare earth ore. In the in situ leaching system, the pore structure plays a dominant role in the permeability of the rare earth orebody and is one of the most important factors that influence the leaching performance. To study the pore structure characteristics of the rare earth ore, an undisturbed ore sample was scanned using X-ray micro-computed tomography. Based on the image processing techniques, visualization of the pore structure was realized and several parameters of 2D and 3D pore structures, such as porosity, pore volume, length, width, aspect ratio, and orientation, were obtained and statistically analyzed. The ball-and-stick model of large pore clusters was built by the maximal ball algorithm, and some of their detailed characteristics were obtained. The results indicate that the pore structure of weathered crust elution-deposited rare earth ore exhibits a multi-scale and strong heterogeneity characteristic. The distribution characteristics of pores between the vertical direction and the horizontal direction are obviously different. The small pores are more prevalent in number, but they make only a small contribution to the total pore volume. In addition, the orientation of the pores is anisotropic in both vertical and horizontal directions. Furthermore, the ball-and-stick model reveals that large pore clusters are composed of several interconnected void spaces, and most of them are small and irregular.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11030236