Loading…
AI-Assisted High-Throughput Tissue Microarray Workflow
Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to...
Saved in:
Published in: | Methods and protocols 2024-11, Vol.7 (6), p.96 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603 |
container_end_page | |
container_issue | 6 |
container_start_page | 96 |
container_title | Methods and protocols |
container_volume | 7 |
creator | Kurowski, Konrad Timme, Sylvia Föll, Melanie Christine Backhaus, Clara Holzner, Philipp Anton Bengsch, Bertram Schilling, Oliver Werner, Martin Bronsert, Peter |
description | Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations. |
doi_str_mv | 10.3390/mps7060096 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_mps7060096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149545083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603</originalsourceid><addsrcrecordid>eNpd0MtKw0AUBuBBFFtqNz6ABNyIED1zzyxLUVuouKm4DNO5tKlJE2capG9vtPWCq3MWHz_n_AidY7ihVMFt1UQJAkCJI9QnDFSqiFTHf_YeGsa4BgCCGUjGT1GPKkkygUUfidE0HcVYxK2zyaRYrtL5KtTtctW022RexNi65LEwodYh6F3yUodXX9bvZ-jE6zK64WEO0PP93Xw8SWdPD9PxaJYazLlIpRNaGu49EwtMDM2AAGaeA8eUOUuEd8SQhbCaqAwbK720CsvMYu6kFkAH6Gqf24T6rXVxm1dFNK4s9cbVbcwpZoozDhnt6OU_uq7bsOmu-1ISZ4KTTl3vVfdSjMH5vAlFpcMux5B_Fpr_Ftrhi0Nku6ic_aHf9dEPqthuIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149718652</pqid></control><display><type>article</type><title>AI-Assisted High-Throughput Tissue Microarray Workflow</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Kurowski, Konrad ; Timme, Sylvia ; Föll, Melanie Christine ; Backhaus, Clara ; Holzner, Philipp Anton ; Bengsch, Bertram ; Schilling, Oliver ; Werner, Martin ; Bronsert, Peter</creator><creatorcontrib>Kurowski, Konrad ; Timme, Sylvia ; Föll, Melanie Christine ; Backhaus, Clara ; Holzner, Philipp Anton ; Bengsch, Bertram ; Schilling, Oliver ; Werner, Martin ; Bronsert, Peter</creatorcontrib><description>Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.</description><identifier>ISSN: 2409-9279</identifier><identifier>EISSN: 2409-9279</identifier><identifier>DOI: 10.3390/mps7060096</identifier><identifier>PMID: 39728616</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Annotations ; Archives & records ; Automation ; Bar codes ; Biobanks ; Cancer ; Cloning ; Cytokeratin ; Digitization ; Image processing ; Immunohistochemistry ; Medical research ; Metastasis ; Pathology ; Patients ; Software ; Stroma ; Tumors</subject><ispartof>Methods and protocols, 2024-11, Vol.7 (6), p.96</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603</cites><orcidid>0000-0001-8558-0347 ; 0000-0002-1887-7543 ; 0000-0002-2140-5547 ; 0000-0001-9221-9728 ; 0009-0009-0448-7999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149718652/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149718652?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39728616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurowski, Konrad</creatorcontrib><creatorcontrib>Timme, Sylvia</creatorcontrib><creatorcontrib>Föll, Melanie Christine</creatorcontrib><creatorcontrib>Backhaus, Clara</creatorcontrib><creatorcontrib>Holzner, Philipp Anton</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Schilling, Oliver</creatorcontrib><creatorcontrib>Werner, Martin</creatorcontrib><creatorcontrib>Bronsert, Peter</creatorcontrib><title>AI-Assisted High-Throughput Tissue Microarray Workflow</title><title>Methods and protocols</title><addtitle>Methods Protoc</addtitle><description>Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.</description><subject>Annotations</subject><subject>Archives & records</subject><subject>Automation</subject><subject>Bar codes</subject><subject>Biobanks</subject><subject>Cancer</subject><subject>Cloning</subject><subject>Cytokeratin</subject><subject>Digitization</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Medical research</subject><subject>Metastasis</subject><subject>Pathology</subject><subject>Patients</subject><subject>Software</subject><subject>Stroma</subject><subject>Tumors</subject><issn>2409-9279</issn><issn>2409-9279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpd0MtKw0AUBuBBFFtqNz6ABNyIED1zzyxLUVuouKm4DNO5tKlJE2capG9vtPWCq3MWHz_n_AidY7ihVMFt1UQJAkCJI9QnDFSqiFTHf_YeGsa4BgCCGUjGT1GPKkkygUUfidE0HcVYxK2zyaRYrtL5KtTtctW022RexNi65LEwodYh6F3yUodXX9bvZ-jE6zK64WEO0PP93Xw8SWdPD9PxaJYazLlIpRNaGu49EwtMDM2AAGaeA8eUOUuEd8SQhbCaqAwbK720CsvMYu6kFkAH6Gqf24T6rXVxm1dFNK4s9cbVbcwpZoozDhnt6OU_uq7bsOmu-1ISZ4KTTl3vVfdSjMH5vAlFpcMux5B_Fpr_Ftrhi0Nku6ic_aHf9dEPqthuIw</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Kurowski, Konrad</creator><creator>Timme, Sylvia</creator><creator>Föll, Melanie Christine</creator><creator>Backhaus, Clara</creator><creator>Holzner, Philipp Anton</creator><creator>Bengsch, Bertram</creator><creator>Schilling, Oliver</creator><creator>Werner, Martin</creator><creator>Bronsert, Peter</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8558-0347</orcidid><orcidid>https://orcid.org/0000-0002-1887-7543</orcidid><orcidid>https://orcid.org/0000-0002-2140-5547</orcidid><orcidid>https://orcid.org/0000-0001-9221-9728</orcidid><orcidid>https://orcid.org/0009-0009-0448-7999</orcidid></search><sort><creationdate>20241125</creationdate><title>AI-Assisted High-Throughput Tissue Microarray Workflow</title><author>Kurowski, Konrad ; Timme, Sylvia ; Föll, Melanie Christine ; Backhaus, Clara ; Holzner, Philipp Anton ; Bengsch, Bertram ; Schilling, Oliver ; Werner, Martin ; Bronsert, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Archives & records</topic><topic>Automation</topic><topic>Bar codes</topic><topic>Biobanks</topic><topic>Cancer</topic><topic>Cloning</topic><topic>Cytokeratin</topic><topic>Digitization</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Medical research</topic><topic>Metastasis</topic><topic>Pathology</topic><topic>Patients</topic><topic>Software</topic><topic>Stroma</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurowski, Konrad</creatorcontrib><creatorcontrib>Timme, Sylvia</creatorcontrib><creatorcontrib>Föll, Melanie Christine</creatorcontrib><creatorcontrib>Backhaus, Clara</creatorcontrib><creatorcontrib>Holzner, Philipp Anton</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Schilling, Oliver</creatorcontrib><creatorcontrib>Werner, Martin</creatorcontrib><creatorcontrib>Bronsert, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Methods and protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurowski, Konrad</au><au>Timme, Sylvia</au><au>Föll, Melanie Christine</au><au>Backhaus, Clara</au><au>Holzner, Philipp Anton</au><au>Bengsch, Bertram</au><au>Schilling, Oliver</au><au>Werner, Martin</au><au>Bronsert, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Assisted High-Throughput Tissue Microarray Workflow</atitle><jtitle>Methods and protocols</jtitle><addtitle>Methods Protoc</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>7</volume><issue>6</issue><spage>96</spage><pages>96-</pages><issn>2409-9279</issn><eissn>2409-9279</eissn><abstract>Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39728616</pmid><doi>10.3390/mps7060096</doi><orcidid>https://orcid.org/0000-0001-8558-0347</orcidid><orcidid>https://orcid.org/0000-0002-1887-7543</orcidid><orcidid>https://orcid.org/0000-0002-2140-5547</orcidid><orcidid>https://orcid.org/0000-0001-9221-9728</orcidid><orcidid>https://orcid.org/0009-0009-0448-7999</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2409-9279 |
ispartof | Methods and protocols, 2024-11, Vol.7 (6), p.96 |
issn | 2409-9279 2409-9279 |
language | eng |
recordid | cdi_crossref_primary_10_3390_mps7060096 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Annotations Archives & records Automation Bar codes Biobanks Cancer Cloning Cytokeratin Digitization Image processing Immunohistochemistry Medical research Metastasis Pathology Patients Software Stroma Tumors |
title | AI-Assisted High-Throughput Tissue Microarray Workflow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Assisted%20High-Throughput%20Tissue%20Microarray%20Workflow&rft.jtitle=Methods%20and%20protocols&rft.au=Kurowski,%20Konrad&rft.date=2024-11-25&rft.volume=7&rft.issue=6&rft.spage=96&rft.pages=96-&rft.issn=2409-9279&rft.eissn=2409-9279&rft_id=info:doi/10.3390/mps7060096&rft_dat=%3Cproquest_cross%3E3149545083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149718652&rft_id=info:pmid/39728616&rfr_iscdi=true |