Loading…

AI-Assisted High-Throughput Tissue Microarray Workflow

Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to...

Full description

Saved in:
Bibliographic Details
Published in:Methods and protocols 2024-11, Vol.7 (6), p.96
Main Authors: Kurowski, Konrad, Timme, Sylvia, Föll, Melanie Christine, Backhaus, Clara, Holzner, Philipp Anton, Bengsch, Bertram, Schilling, Oliver, Werner, Martin, Bronsert, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603
container_end_page
container_issue 6
container_start_page 96
container_title Methods and protocols
container_volume 7
creator Kurowski, Konrad
Timme, Sylvia
Föll, Melanie Christine
Backhaus, Clara
Holzner, Philipp Anton
Bengsch, Bertram
Schilling, Oliver
Werner, Martin
Bronsert, Peter
description Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.
doi_str_mv 10.3390/mps7060096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_mps7060096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149545083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603</originalsourceid><addsrcrecordid>eNpd0MtKw0AUBuBBFFtqNz6ABNyIED1zzyxLUVuouKm4DNO5tKlJE2capG9vtPWCq3MWHz_n_AidY7ihVMFt1UQJAkCJI9QnDFSqiFTHf_YeGsa4BgCCGUjGT1GPKkkygUUfidE0HcVYxK2zyaRYrtL5KtTtctW022RexNi65LEwodYh6F3yUodXX9bvZ-jE6zK64WEO0PP93Xw8SWdPD9PxaJYazLlIpRNaGu49EwtMDM2AAGaeA8eUOUuEd8SQhbCaqAwbK720CsvMYu6kFkAH6Gqf24T6rXVxm1dFNK4s9cbVbcwpZoozDhnt6OU_uq7bsOmu-1ISZ4KTTl3vVfdSjMH5vAlFpcMux5B_Fpr_Ftrhi0Nku6ic_aHf9dEPqthuIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149718652</pqid></control><display><type>article</type><title>AI-Assisted High-Throughput Tissue Microarray Workflow</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Kurowski, Konrad ; Timme, Sylvia ; Föll, Melanie Christine ; Backhaus, Clara ; Holzner, Philipp Anton ; Bengsch, Bertram ; Schilling, Oliver ; Werner, Martin ; Bronsert, Peter</creator><creatorcontrib>Kurowski, Konrad ; Timme, Sylvia ; Föll, Melanie Christine ; Backhaus, Clara ; Holzner, Philipp Anton ; Bengsch, Bertram ; Schilling, Oliver ; Werner, Martin ; Bronsert, Peter</creatorcontrib><description>Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.</description><identifier>ISSN: 2409-9279</identifier><identifier>EISSN: 2409-9279</identifier><identifier>DOI: 10.3390/mps7060096</identifier><identifier>PMID: 39728616</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Annotations ; Archives &amp; records ; Automation ; Bar codes ; Biobanks ; Cancer ; Cloning ; Cytokeratin ; Digitization ; Image processing ; Immunohistochemistry ; Medical research ; Metastasis ; Pathology ; Patients ; Software ; Stroma ; Tumors</subject><ispartof>Methods and protocols, 2024-11, Vol.7 (6), p.96</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603</cites><orcidid>0000-0001-8558-0347 ; 0000-0002-1887-7543 ; 0000-0002-2140-5547 ; 0000-0001-9221-9728 ; 0009-0009-0448-7999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149718652/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149718652?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39728616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurowski, Konrad</creatorcontrib><creatorcontrib>Timme, Sylvia</creatorcontrib><creatorcontrib>Föll, Melanie Christine</creatorcontrib><creatorcontrib>Backhaus, Clara</creatorcontrib><creatorcontrib>Holzner, Philipp Anton</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Schilling, Oliver</creatorcontrib><creatorcontrib>Werner, Martin</creatorcontrib><creatorcontrib>Bronsert, Peter</creatorcontrib><title>AI-Assisted High-Throughput Tissue Microarray Workflow</title><title>Methods and protocols</title><addtitle>Methods Protoc</addtitle><description>Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.</description><subject>Annotations</subject><subject>Archives &amp; records</subject><subject>Automation</subject><subject>Bar codes</subject><subject>Biobanks</subject><subject>Cancer</subject><subject>Cloning</subject><subject>Cytokeratin</subject><subject>Digitization</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Medical research</subject><subject>Metastasis</subject><subject>Pathology</subject><subject>Patients</subject><subject>Software</subject><subject>Stroma</subject><subject>Tumors</subject><issn>2409-9279</issn><issn>2409-9279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpd0MtKw0AUBuBBFFtqNz6ABNyIED1zzyxLUVuouKm4DNO5tKlJE2capG9vtPWCq3MWHz_n_AidY7ihVMFt1UQJAkCJI9QnDFSqiFTHf_YeGsa4BgCCGUjGT1GPKkkygUUfidE0HcVYxK2zyaRYrtL5KtTtctW022RexNi65LEwodYh6F3yUodXX9bvZ-jE6zK64WEO0PP93Xw8SWdPD9PxaJYazLlIpRNaGu49EwtMDM2AAGaeA8eUOUuEd8SQhbCaqAwbK720CsvMYu6kFkAH6Gqf24T6rXVxm1dFNK4s9cbVbcwpZoozDhnt6OU_uq7bsOmu-1ISZ4KTTl3vVfdSjMH5vAlFpcMux5B_Fpr_Ftrhi0Nku6ic_aHf9dEPqthuIw</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Kurowski, Konrad</creator><creator>Timme, Sylvia</creator><creator>Föll, Melanie Christine</creator><creator>Backhaus, Clara</creator><creator>Holzner, Philipp Anton</creator><creator>Bengsch, Bertram</creator><creator>Schilling, Oliver</creator><creator>Werner, Martin</creator><creator>Bronsert, Peter</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8558-0347</orcidid><orcidid>https://orcid.org/0000-0002-1887-7543</orcidid><orcidid>https://orcid.org/0000-0002-2140-5547</orcidid><orcidid>https://orcid.org/0000-0001-9221-9728</orcidid><orcidid>https://orcid.org/0009-0009-0448-7999</orcidid></search><sort><creationdate>20241125</creationdate><title>AI-Assisted High-Throughput Tissue Microarray Workflow</title><author>Kurowski, Konrad ; Timme, Sylvia ; Föll, Melanie Christine ; Backhaus, Clara ; Holzner, Philipp Anton ; Bengsch, Bertram ; Schilling, Oliver ; Werner, Martin ; Bronsert, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Archives &amp; records</topic><topic>Automation</topic><topic>Bar codes</topic><topic>Biobanks</topic><topic>Cancer</topic><topic>Cloning</topic><topic>Cytokeratin</topic><topic>Digitization</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Medical research</topic><topic>Metastasis</topic><topic>Pathology</topic><topic>Patients</topic><topic>Software</topic><topic>Stroma</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurowski, Konrad</creatorcontrib><creatorcontrib>Timme, Sylvia</creatorcontrib><creatorcontrib>Föll, Melanie Christine</creatorcontrib><creatorcontrib>Backhaus, Clara</creatorcontrib><creatorcontrib>Holzner, Philipp Anton</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Schilling, Oliver</creatorcontrib><creatorcontrib>Werner, Martin</creatorcontrib><creatorcontrib>Bronsert, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Methods and protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurowski, Konrad</au><au>Timme, Sylvia</au><au>Föll, Melanie Christine</au><au>Backhaus, Clara</au><au>Holzner, Philipp Anton</au><au>Bengsch, Bertram</au><au>Schilling, Oliver</au><au>Werner, Martin</au><au>Bronsert, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Assisted High-Throughput Tissue Microarray Workflow</atitle><jtitle>Methods and protocols</jtitle><addtitle>Methods Protoc</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>7</volume><issue>6</issue><spage>96</spage><pages>96-</pages><issn>2409-9279</issn><eissn>2409-9279</eissn><abstract>Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups. Semiautomatic constructed tissue microarrays (TMAs) were created for two tumor patient cohorts and IHC stained for seven antibodies (ABs). AB expression in the tumor and surrounding stroma was quantified using the AI-supported image analysis software QuPath. The data were correlated with clinicopathological information using an R-script, all results were automatically compiled into formatted reports. By minimizing labor time to 7.7%-compared to whole-slide studies-the established workflow significantly reduced human and material resource consumption. It successfully correlated AB expression with overall patient survival and additional clinicopathological data, providing publication-ready figures and tables. The AI-assisted high-throughput TMA workflow, validated on two patient cohorts, streamlines modern histopathological research by offering cost and time efficiency compared to traditional whole-slide studies. It maintains research quality and preserves patient tissue while significantly reducing material and human resources, making it ideal for high-throughput research centers and collaborations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39728616</pmid><doi>10.3390/mps7060096</doi><orcidid>https://orcid.org/0000-0001-8558-0347</orcidid><orcidid>https://orcid.org/0000-0002-1887-7543</orcidid><orcidid>https://orcid.org/0000-0002-2140-5547</orcidid><orcidid>https://orcid.org/0000-0001-9221-9728</orcidid><orcidid>https://orcid.org/0009-0009-0448-7999</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2409-9279
ispartof Methods and protocols, 2024-11, Vol.7 (6), p.96
issn 2409-9279
2409-9279
language eng
recordid cdi_crossref_primary_10_3390_mps7060096
source PubMed (Medline); Publicly Available Content Database
subjects Annotations
Archives & records
Automation
Bar codes
Biobanks
Cancer
Cloning
Cytokeratin
Digitization
Image processing
Immunohistochemistry
Medical research
Metastasis
Pathology
Patients
Software
Stroma
Tumors
title AI-Assisted High-Throughput Tissue Microarray Workflow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Assisted%20High-Throughput%20Tissue%20Microarray%20Workflow&rft.jtitle=Methods%20and%20protocols&rft.au=Kurowski,%20Konrad&rft.date=2024-11-25&rft.volume=7&rft.issue=6&rft.spage=96&rft.pages=96-&rft.issn=2409-9279&rft.eissn=2409-9279&rft_id=info:doi/10.3390/mps7060096&rft_dat=%3Cproquest_cross%3E3149545083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1556-7e6a7c5ff46b12c3802014f505134ed26fe2c2b6da2981cd7f7d9178d15e7a603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149718652&rft_id=info:pmid/39728616&rfr_iscdi=true