Loading…
Thermo-Acoustic Catalytic Effect on Oxidizing Woody Torrefaction
The torrefaction (mild pyrolysis) process modifies biomass chemical and physical properties and is applied as a thermochemical route to upgrade solid fuel. In this work, the catalytic effect of thermo-acoustic on oxidizing woody torrefaction is assessed. The combined effect of two acoustic frequenci...
Saved in:
Published in: | Processes 2020-11, Vol.8 (11), p.1361 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The torrefaction (mild pyrolysis) process modifies biomass chemical and physical properties and is applied as a thermochemical route to upgrade solid fuel. In this work, the catalytic effect of thermo-acoustic on oxidizing woody torrefaction is assessed. The combined effect of two acoustic frequencies (1411, 2696 Hz) and three temperatures (230, 250, and 290 °C) was evaluated through weight loss and its deviation curves, calculated torrefaction severity index (TSI), as well as proximate, calorific, and compression strength analysis of Eucalyptus grandis. A new index to account for the catalytic effects on torrefaction (TCEI) was introduced, providing the quantitative analysis of acoustic frequencies influence. A two-step consecutive reaction numerical model allowed the thermo-acoustic experiment evaluation. For instance, the thermogravimetric profiles revealed that the acoustic field has a catalytic effect on wood torrefaction and enhances the biomass oxidation process for severe treatments. The kinetic simulation of the acoustic coupling resulted in faster conversion rates for the solid pseudo-components showing the boosting effect of acoustic frequencies in anticipating hemicellulose decomposition and enhancing second step oxidizing reaction. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr8111361 |