Loading…

Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry

Using logistic regression technique and Deep Recurrent Convolutional Neural Network, this study seeks to improve the capacity of existing bankruptcy prediction models for the restaurant industry. In addition, we have verified, in the review of existing literature, the gap in the research of restaura...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2020-06, Vol.12 (12), p.5180
Main Authors: Becerra-Vicario, Rafael, Alaminos, David, Aranda, Eva, Fernández-Gámez, Manuel A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123
cites cdi_FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123
container_end_page
container_issue 12
container_start_page 5180
container_title Sustainability
container_volume 12
creator Becerra-Vicario, Rafael
Alaminos, David
Aranda, Eva
Fernández-Gámez, Manuel A.
description Using logistic regression technique and Deep Recurrent Convolutional Neural Network, this study seeks to improve the capacity of existing bankruptcy prediction models for the restaurant industry. In addition, we have verified, in the review of existing literature, the gap in the research of restaurant bankruptcy models with sufficient time in advance and that only companies in the restaurant sector in the same country are considered. Our goal is to build a restaurant bankruptcy prediction model that provides high accuracy, using information distant from the bankruptcy situation. We had a sample of Spanish restaurants corresponding to the 2008–2017 period, composed of 460 solvent and bankrupt companies, for which a total of 28 variables were analyzed, including some of a non-financial nature, such as age of restaurant, quality, and belonging to a chain. The results indicate that the best bankruptcy predictors are financial variables related to profitability and indebtedness and that Deep Recurrent Convolutional Neural Network exceeds logistic regression in predictive capacity.
doi_str_mv 10.3390/su12125180
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_su12125180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_su12125180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123</originalsourceid><addsrcrecordid>eNpNkEtLxDAUhYMoOIyz8RdkLVRzk7Zp3I31NTCoiK5Lmt4ydWoz5KH039tRQc_mnMW5H5dDyCmwcyEUu_AROPAMCnZAZpxJSIBl7PBfPiYL79_YJCFAQT4jm2vEHX1GE53DIdDSDh-2j6Gzg-7pA0b3beHTui1traNXeti6uAtmpE8Om87sq5d0SUvtkdqWhg1OPB_0dDoBV0MTfXDjCTlqde9x8etz8np781LeJ-vHu1W5XCeG5zIkPGUSm1blUkqFIBkWSmU4PVxDjkrkWcrQFKZWNecCUMqmhbRW2qQoCuBiTs5-uMZZ7x221c5179qNFbBqP1P1N5P4Aq3OWr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry</title><source>Publicly Available Content Database</source><creator>Becerra-Vicario, Rafael ; Alaminos, David ; Aranda, Eva ; Fernández-Gámez, Manuel A.</creator><creatorcontrib>Becerra-Vicario, Rafael ; Alaminos, David ; Aranda, Eva ; Fernández-Gámez, Manuel A.</creatorcontrib><description>Using logistic regression technique and Deep Recurrent Convolutional Neural Network, this study seeks to improve the capacity of existing bankruptcy prediction models for the restaurant industry. In addition, we have verified, in the review of existing literature, the gap in the research of restaurant bankruptcy models with sufficient time in advance and that only companies in the restaurant sector in the same country are considered. Our goal is to build a restaurant bankruptcy prediction model that provides high accuracy, using information distant from the bankruptcy situation. We had a sample of Spanish restaurants corresponding to the 2008–2017 period, composed of 460 solvent and bankrupt companies, for which a total of 28 variables were analyzed, including some of a non-financial nature, such as age of restaurant, quality, and belonging to a chain. The results indicate that the best bankruptcy predictors are financial variables related to profitability and indebtedness and that Deep Recurrent Convolutional Neural Network exceeds logistic regression in predictive capacity.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12125180</identifier><language>eng</language><ispartof>Sustainability, 2020-06, Vol.12 (12), p.5180</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123</citedby><cites>FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123</cites><orcidid>0000-0002-2846-5104 ; 0000-0002-1227-8988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Becerra-Vicario, Rafael</creatorcontrib><creatorcontrib>Alaminos, David</creatorcontrib><creatorcontrib>Aranda, Eva</creatorcontrib><creatorcontrib>Fernández-Gámez, Manuel A.</creatorcontrib><title>Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry</title><title>Sustainability</title><description>Using logistic regression technique and Deep Recurrent Convolutional Neural Network, this study seeks to improve the capacity of existing bankruptcy prediction models for the restaurant industry. In addition, we have verified, in the review of existing literature, the gap in the research of restaurant bankruptcy models with sufficient time in advance and that only companies in the restaurant sector in the same country are considered. Our goal is to build a restaurant bankruptcy prediction model that provides high accuracy, using information distant from the bankruptcy situation. We had a sample of Spanish restaurants corresponding to the 2008–2017 period, composed of 460 solvent and bankrupt companies, for which a total of 28 variables were analyzed, including some of a non-financial nature, such as age of restaurant, quality, and belonging to a chain. The results indicate that the best bankruptcy predictors are financial variables related to profitability and indebtedness and that Deep Recurrent Convolutional Neural Network exceeds logistic regression in predictive capacity.</description><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAUhYMoOIyz8RdkLVRzk7Zp3I31NTCoiK5Lmt4ydWoz5KH039tRQc_mnMW5H5dDyCmwcyEUu_AROPAMCnZAZpxJSIBl7PBfPiYL79_YJCFAQT4jm2vEHX1GE53DIdDSDh-2j6Gzg-7pA0b3beHTui1traNXeti6uAtmpE8Om87sq5d0SUvtkdqWhg1OPB_0dDoBV0MTfXDjCTlqde9x8etz8np781LeJ-vHu1W5XCeG5zIkPGUSm1blUkqFIBkWSmU4PVxDjkrkWcrQFKZWNecCUMqmhbRW2qQoCuBiTs5-uMZZ7x221c5179qNFbBqP1P1N5P4Aq3OWr8</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Becerra-Vicario, Rafael</creator><creator>Alaminos, David</creator><creator>Aranda, Eva</creator><creator>Fernández-Gámez, Manuel A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2846-5104</orcidid><orcidid>https://orcid.org/0000-0002-1227-8988</orcidid></search><sort><creationdate>20200601</creationdate><title>Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry</title><author>Becerra-Vicario, Rafael ; Alaminos, David ; Aranda, Eva ; Fernández-Gámez, Manuel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becerra-Vicario, Rafael</creatorcontrib><creatorcontrib>Alaminos, David</creatorcontrib><creatorcontrib>Aranda, Eva</creatorcontrib><creatorcontrib>Fernández-Gámez, Manuel A.</creatorcontrib><collection>CrossRef</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becerra-Vicario, Rafael</au><au>Alaminos, David</au><au>Aranda, Eva</au><au>Fernández-Gámez, Manuel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry</atitle><jtitle>Sustainability</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>5180</spage><pages>5180-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Using logistic regression technique and Deep Recurrent Convolutional Neural Network, this study seeks to improve the capacity of existing bankruptcy prediction models for the restaurant industry. In addition, we have verified, in the review of existing literature, the gap in the research of restaurant bankruptcy models with sufficient time in advance and that only companies in the restaurant sector in the same country are considered. Our goal is to build a restaurant bankruptcy prediction model that provides high accuracy, using information distant from the bankruptcy situation. We had a sample of Spanish restaurants corresponding to the 2008–2017 period, composed of 460 solvent and bankrupt companies, for which a total of 28 variables were analyzed, including some of a non-financial nature, such as age of restaurant, quality, and belonging to a chain. The results indicate that the best bankruptcy predictors are financial variables related to profitability and indebtedness and that Deep Recurrent Convolutional Neural Network exceeds logistic regression in predictive capacity.</abstract><doi>10.3390/su12125180</doi><orcidid>https://orcid.org/0000-0002-2846-5104</orcidid><orcidid>https://orcid.org/0000-0002-1227-8988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2020-06, Vol.12 (12), p.5180
issn 2071-1050
2071-1050
language eng
recordid cdi_crossref_primary_10_3390_su12125180
source Publicly Available Content Database
title Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Recurrent%20Convolutional%20Neural%20Network%20for%20Bankruptcy%20Prediction:%20A%20Case%20of%20the%20Restaurant%20Industry&rft.jtitle=Sustainability&rft.au=Becerra-Vicario,%20Rafael&rft.date=2020-06-01&rft.volume=12&rft.issue=12&rft.spage=5180&rft.pages=5180-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12125180&rft_dat=%3Ccrossref%3E10_3390_su12125180%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-2407edf967779e170e8995e003b16e936540ec8cb9b2231e77df14b9ac4e38123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true