Loading…
Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands
The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on rea...
Saved in:
Published in: | World electric vehicle journal 2018-08, Vol.9 (2), p.17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873 |
---|---|
cites | cdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873 |
container_end_page | |
container_issue | 2 |
container_start_page | 17 |
container_title | World electric vehicle journal |
container_volume | 9 |
creator | Mies, Jerome Helmus, Jurjen van den Hoed, Robert |
description | The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes. |
doi_str_mv | 10.3390/wevj9020017 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_wevj9020017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_wevj9020017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</originalsourceid><addsrcrecordid>eNpNkEFLxDAQhYMouKx78g_kLtWZJm3ao5SqC4sKrl5Lmk62WWorSV3x39uyHvbwmPd48ME8xq4RboXI4e6HDvscYgBUZ2wRg4ijNE3E-Ym_ZKsQ9gAQo8wRccGoDKP71KPrd3xsiRet9rs5vPrBuo74YPm6b9zBNd-6O9bE3ygEN_RhbsuOzOid4R_UOtNR4K7n2wn1TBPQd7pvwhW7sLoLtPq_S_b-UG6Lp2jz8rgu7jeRwSxR0SRKpMwNYkakswy1AJHWkEplQepUaqtykaCyIk_ipjZKagVNLLWpMVNiyW6OXOOHEDzZ6stP3_nfCqGaR6pORhJ_HjNaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Mies, Jerome ; Helmus, Jurjen ; van den Hoed, Robert</creator><creatorcontrib>Mies, Jerome ; Helmus, Jurjen ; van den Hoed, Robert</creatorcontrib><description>The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.</description><identifier>ISSN: 2032-6653</identifier><identifier>EISSN: 2032-6653</identifier><identifier>DOI: 10.3390/wevj9020017</identifier><language>eng</language><ispartof>World electric vehicle journal, 2018-08, Vol.9 (2), p.17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</citedby><cites>FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mies, Jerome</creatorcontrib><creatorcontrib>Helmus, Jurjen</creatorcontrib><creatorcontrib>van den Hoed, Robert</creatorcontrib><title>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</title><title>World electric vehicle journal</title><description>The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.</description><issn>2032-6653</issn><issn>2032-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLxDAQhYMouKx78g_kLtWZJm3ao5SqC4sKrl5Lmk62WWorSV3x39uyHvbwmPd48ME8xq4RboXI4e6HDvscYgBUZ2wRg4ijNE3E-Ym_ZKsQ9gAQo8wRccGoDKP71KPrd3xsiRet9rs5vPrBuo74YPm6b9zBNd-6O9bE3ygEN_RhbsuOzOid4R_UOtNR4K7n2wn1TBPQd7pvwhW7sLoLtPq_S_b-UG6Lp2jz8rgu7jeRwSxR0SRKpMwNYkakswy1AJHWkEplQepUaqtykaCyIk_ipjZKagVNLLWpMVNiyW6OXOOHEDzZ6stP3_nfCqGaR6pORhJ_HjNaKQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Mies, Jerome</creator><creator>Helmus, Jurjen</creator><creator>van den Hoed, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</title><author>Mies, Jerome ; Helmus, Jurjen ; van den Hoed, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mies, Jerome</creatorcontrib><creatorcontrib>Helmus, Jurjen</creatorcontrib><creatorcontrib>van den Hoed, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>World electric vehicle journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mies, Jerome</au><au>Helmus, Jurjen</au><au>van den Hoed, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</atitle><jtitle>World electric vehicle journal</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>17</spage><pages>17-</pages><issn>2032-6653</issn><eissn>2032-6653</eissn><abstract>The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.</abstract><doi>10.3390/wevj9020017</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2032-6653 |
ispartof | World electric vehicle journal, 2018-08, Vol.9 (2), p.17 |
issn | 2032-6653 2032-6653 |
language | eng |
recordid | cdi_crossref_primary_10_3390_wevj9020017 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
title | Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Charging%20Profile%20of%20Individual%20Charge%20Sessions%20of%20Electric%20Vehicles%20in%20The%20Netherlands&rft.jtitle=World%20electric%20vehicle%20journal&rft.au=Mies,%20Jerome&rft.date=2018-08-01&rft.volume=9&rft.issue=2&rft.spage=17&rft.pages=17-&rft.issn=2032-6653&rft.eissn=2032-6653&rft_id=info:doi/10.3390/wevj9020017&rft_dat=%3Ccrossref%3E10_3390_wevj9020017%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |