Loading…

Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands

The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on rea...

Full description

Saved in:
Bibliographic Details
Published in:World electric vehicle journal 2018-08, Vol.9 (2), p.17
Main Authors: Mies, Jerome, Helmus, Jurjen, van den Hoed, Robert
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873
cites cdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873
container_end_page
container_issue 2
container_start_page 17
container_title World electric vehicle journal
container_volume 9
creator Mies, Jerome
Helmus, Jurjen
van den Hoed, Robert
description The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.
doi_str_mv 10.3390/wevj9020017
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_wevj9020017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_wevj9020017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</originalsourceid><addsrcrecordid>eNpNkEFLxDAQhYMouKx78g_kLtWZJm3ao5SqC4sKrl5Lmk62WWorSV3x39uyHvbwmPd48ME8xq4RboXI4e6HDvscYgBUZ2wRg4ijNE3E-Ym_ZKsQ9gAQo8wRccGoDKP71KPrd3xsiRet9rs5vPrBuo74YPm6b9zBNd-6O9bE3ygEN_RhbsuOzOid4R_UOtNR4K7n2wn1TBPQd7pvwhW7sLoLtPq_S_b-UG6Lp2jz8rgu7jeRwSxR0SRKpMwNYkakswy1AJHWkEplQepUaqtykaCyIk_ipjZKagVNLLWpMVNiyW6OXOOHEDzZ6stP3_nfCqGaR6pORhJ_HjNaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Mies, Jerome ; Helmus, Jurjen ; van den Hoed, Robert</creator><creatorcontrib>Mies, Jerome ; Helmus, Jurjen ; van den Hoed, Robert</creatorcontrib><description>The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.</description><identifier>ISSN: 2032-6653</identifier><identifier>EISSN: 2032-6653</identifier><identifier>DOI: 10.3390/wevj9020017</identifier><language>eng</language><ispartof>World electric vehicle journal, 2018-08, Vol.9 (2), p.17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</citedby><cites>FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mies, Jerome</creatorcontrib><creatorcontrib>Helmus, Jurjen</creatorcontrib><creatorcontrib>van den Hoed, Robert</creatorcontrib><title>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</title><title>World electric vehicle journal</title><description>The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.</description><issn>2032-6653</issn><issn>2032-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLxDAQhYMouKx78g_kLtWZJm3ao5SqC4sKrl5Lmk62WWorSV3x39uyHvbwmPd48ME8xq4RboXI4e6HDvscYgBUZ2wRg4ijNE3E-Ym_ZKsQ9gAQo8wRccGoDKP71KPrd3xsiRet9rs5vPrBuo74YPm6b9zBNd-6O9bE3ygEN_RhbsuOzOid4R_UOtNR4K7n2wn1TBPQd7pvwhW7sLoLtPq_S_b-UG6Lp2jz8rgu7jeRwSxR0SRKpMwNYkakswy1AJHWkEplQepUaqtykaCyIk_ipjZKagVNLLWpMVNiyW6OXOOHEDzZ6stP3_nfCqGaR6pORhJ_HjNaKQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Mies, Jerome</creator><creator>Helmus, Jurjen</creator><creator>van den Hoed, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</title><author>Mies, Jerome ; Helmus, Jurjen ; van den Hoed, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mies, Jerome</creatorcontrib><creatorcontrib>Helmus, Jurjen</creatorcontrib><creatorcontrib>van den Hoed, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>World electric vehicle journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mies, Jerome</au><au>Helmus, Jurjen</au><au>van den Hoed, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands</atitle><jtitle>World electric vehicle journal</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>17</spage><pages>17-</pages><issn>2032-6653</issn><eissn>2032-6653</eissn><abstract>The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery to a full battery of the EVs, based on real-world data, needs to be analyzed. Currently, many researchers view this charging profile as a static load and ignore the actual charging behavior during the charging session. However, this study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessions in The Netherlands, and thereby enable optimization analysis of EV smart charging schemes.</abstract><doi>10.3390/wevj9020017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2032-6653
ispartof World electric vehicle journal, 2018-08, Vol.9 (2), p.17
issn 2032-6653
2032-6653
language eng
recordid cdi_crossref_primary_10_3390_wevj9020017
source Publicly Available Content Database; EZB Electronic Journals Library
title Estimating the Charging Profile of Individual Charge Sessions of Electric Vehicles in The Netherlands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Charging%20Profile%20of%20Individual%20Charge%20Sessions%20of%20Electric%20Vehicles%20in%20The%20Netherlands&rft.jtitle=World%20electric%20vehicle%20journal&rft.au=Mies,%20Jerome&rft.date=2018-08-01&rft.volume=9&rft.issue=2&rft.spage=17&rft.pages=17-&rft.issn=2032-6653&rft.eissn=2032-6653&rft_id=info:doi/10.3390/wevj9020017&rft_dat=%3Ccrossref%3E10_3390_wevj9020017%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1857-857e5449c118eea881a3036b0647f04a64af793517f3952dbc74a70d24acb1873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true