Loading…
Morphological control of nanostructured Ge films in high Ar-gas-pressure plasma sputtering process for Li ion batteries
We present a study on morphological control of nanostructured Ge films by the Ar gas pressure in plasma sputtering deposition. In the low Ar-gas-pressure range, aggregated islands of amorphous grains are formed on the film surface, while in the high-pressure range of 500 mTorr monodisperse nano-grai...
Saved in:
Published in: | Japanese Journal of Applied Physics 2022-01, Vol.61 (SA), p.SA1002 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a study on morphological control of nanostructured Ge films by the Ar gas pressure in plasma sputtering deposition. In the low Ar-gas-pressure range, aggregated islands of amorphous grains are formed on the film surface, while in the high-pressure range of 500 mTorr monodisperse nano-grains of about 30 nm in size are orderly arranged without aggregation. The film porosity shows a high value of over 10%. We tested the charge/discharge cycle performance of Li-ion batteries with nanostructured Ge films as anodes. The battery cell with an ordered arrangement structure maintained a high capacity of 434 mAh g
−1
after 40 charge/discharge cycles, while that with an aggregated structure exhibited a rapid degradation of capacity to 5.08–183 mAh g
−1
. An ordered arrangement of Ge nano-grains with a high porosity, which is realized in a simple one-step procedure using high Ar-gas-pressure plasma sputtering, is effective for the stable cycling of high-capacity metal anodes. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.35848/1347-4065/ac2b7b |