Loading…

Proposal and numerical verification of an ultrasmall terahertz source using integrated photonic crystal waveguides for highly efficient differential frequency generation

We propose and numerically investigate integrated photonic crystal waveguides (PhC-WGs) formed in a semiconductor slab to realize an ultrasmall and highly efficient terahertz (THz) wave source. The structure consists of a straight PhC-WG with low-group-velocity and low-dispersion (LVLD) for efficien...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2023-06, Vol.62 (SG), p.SG1033
Main Authors: Koyama, Yota, Oda, Hisaya, Ikeda, Naoki, Sugimoto, Yoshimasa, Ozaki, Nobuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose and numerically investigate integrated photonic crystal waveguides (PhC-WGs) formed in a semiconductor slab to realize an ultrasmall and highly efficient terahertz (THz) wave source. The structure consists of a straight PhC-WG with low-group-velocity and low-dispersion (LVLD) for efficient difference frequency generation (DFG) connected to two PhC-WGs to introduce two fundamental lights into the LVLD PhC-WG. The fundamental light propagating through each PhC-WG designed to enhance their electric fields by the slow-light effect is efficiently coupled to the LVLD PhC-WG owing to the reduced refractive index differences at the boundaries of the heterostructures. The DFG from the two fundamental lights was numerically simulated, and a temporal intensity oscillation corresponding to the difference in frequency was clearly observed. By comparing the DFG intensities of the integrated structures with an LVLD PhC-WG and a strip WG, the estimated DFG intensity from the LVLD PhC-WG was more than 100 times higher than that from the strip WG. These results indicate the effectiveness of the proposed heterostructure in the application of a highly efficient THz source with an ultrasmall footprint compared with conventional materials.
ISSN:0021-4922
1347-4065
DOI:10.35848/1347-4065/acc18d