Loading…
Formation of neuron-microelectrode junction mediated by a synapse organizer
Neural circuits are composed of various cell types, each of which is thought to play a specific role in realizing the circuit functions. Cell-type specificity is therefore essential in recording neuronal activities but is inherently lacking in the currently available microelectrode techniques. Here,...
Saved in:
Published in: | Applied physics express 2023-05, Vol.16 (5), p.57003 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural circuits are composed of various cell types, each of which is thought to play a specific role in realizing the circuit functions. Cell-type specificity is therefore essential in recording neuronal activities but is inherently lacking in the currently available microelectrode techniques. Here, using Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) as a model synapse organizer, we show a proof-of-principle experiment that a microelectrode functionalized with a synapse organizer is capable of inducing a synapse-like junction between a neuron upon physical contact. We then discuss prospects for developing a new mode of electrophysiology that permits cell-type specific recordings via such a molecularly induced neuron-microelectrode junction. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.35848/1882-0786/acd166 |