Loading…
Investigation of timing margin in single-flux-quantum 4 bit adders for increasing clock frequency of gate-level-pipelined circuits
This study investigates the timing margin required to handle fluctuations and variations in superconductor single-flux-quantum gate-level-pipelined adders; a smaller timing margin would improve the clock frequencies of gate-level-pipelined circuits. To evaluate timing margins, we demonstrated three...
Saved in:
Published in: | Applied physics express 2024-05, Vol.17 (5), p.54501 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the timing margin required to handle fluctuations and variations in superconductor single-flux-quantum gate-level-pipelined adders; a smaller timing margin would improve the clock frequencies of gate-level-pipelined circuits. To evaluate timing margins, we demonstrated three 4 bit adders with 50-, 75-, and 100 GHz target clock frequencies using a 1.0
μ
m process. We estimated that the required timing margin of the adders was 2.1 ps. This indicates that previously reported gate-level-pipelined circuits operating at 30–60 GHz could operate at higher clock frequencies by reducing the timing margins. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.35848/1882-0786/ad46e5 |