Loading…

GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease

Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integ...

Full description

Saved in:
Bibliographic Details
Published in:International journal of innovative technology and exploring engineering 2022-08, Vol.11 (9), p.44-46
Main Authors: Devadiga, Nithyananda B, K N, Akshatha
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063
cites cdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063
container_end_page 46
container_issue 9
container_start_page 44
container_title International journal of innovative technology and exploring engineering
container_volume 11
creator Devadiga, Nithyananda B
K N, Akshatha
description Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.
doi_str_mv 10.35940/ijitee.G9243.0811922
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_G9243_0811922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_G9243_0811922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</originalsourceid><addsrcrecordid>eNpN0M1OAjEYheHGaCJRLsGkNzDY35np0qAiyaBGcT35aL-BIhRtSwh3LwEWrs5ZvYuHkDvOBlIbxe790mfEwcgIJQes5twIcUF6QlR1IVmlL__9a9JPackY41LxujQ9sh41wwmF4GjzOZ3QD7TbGDFk-orbCKvD5N0mfic6DhnnETI6uvN5QSdgFz4gbRBi8GFOp2gXwf9uMdG8oWN3iPhuT99XcKg9-oSQ8JZcdbBK2D_vDfl6fpoOX4rmbTQePjSF5UqLQii0RkiBXdkxYwSTXIFylhmtKi5nunMWgEOJxtW1s5UwDKyrOu1maFgpb4g-dW3cpBSxa3-iX0Pct5y1R7b2xNYe2dozm_wDQidjFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Devadiga, Nithyananda B ; K N, Akshatha</creator><creatorcontrib>Devadiga, Nithyananda B ; K N, Akshatha ; Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India ; Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><description>Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.G9243.0811922</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2022-08, Vol.11 (9), p.44-46</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</citedby><cites>FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Devadiga, Nithyananda B</creatorcontrib><creatorcontrib>K N, Akshatha</creatorcontrib><creatorcontrib>Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><creatorcontrib>Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><title>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</title><title>International journal of innovative technology and exploring engineering</title><description>Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0M1OAjEYheHGaCJRLsGkNzDY35np0qAiyaBGcT35aL-BIhRtSwh3LwEWrs5ZvYuHkDvOBlIbxe790mfEwcgIJQes5twIcUF6QlR1IVmlL__9a9JPackY41LxujQ9sh41wwmF4GjzOZ3QD7TbGDFk-orbCKvD5N0mfic6DhnnETI6uvN5QSdgFz4gbRBi8GFOp2gXwf9uMdG8oWN3iPhuT99XcKg9-oSQ8JZcdbBK2D_vDfl6fpoOX4rmbTQePjSF5UqLQii0RkiBXdkxYwSTXIFylhmtKi5nunMWgEOJxtW1s5UwDKyrOu1maFgpb4g-dW3cpBSxa3-iX0Pct5y1R7b2xNYe2dozm_wDQidjFg</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Devadiga, Nithyananda B</creator><creator>K N, Akshatha</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220830</creationdate><title>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</title><author>Devadiga, Nithyananda B ; K N, Akshatha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Devadiga, Nithyananda B</creatorcontrib><creatorcontrib>K N, Akshatha</creatorcontrib><creatorcontrib>Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><creatorcontrib>Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devadiga, Nithyananda B</au><au>K N, Akshatha</au><aucorp>Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India</aucorp><aucorp>Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2022-08-30</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>44</spage><epage>46</epage><pages>44-46</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.</abstract><doi>10.35940/ijitee.G9243.0811922</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2278-3075
ispartof International journal of innovative technology and exploring engineering, 2022-08, Vol.11 (9), p.44-46
issn 2278-3075
2278-3075
language eng
recordid cdi_crossref_primary_10_35940_ijitee_G9243_0811922
source ROAD: Directory of Open Access Scholarly Resources
title GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLCM%20and%20LSTM%20Recurrent%20Neural%20Networks%20Integrated%20with%20Machine%20Learning%20Techniques%20to%20Identify%20Plant%20Disease&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Devadiga,%20Nithyananda%20B&rft.aucorp=Department%20of%20Botany,%20RN%20Shetty%20PU%20College,%20Kundapura%20(Karnataka),%20India&rft.date=2022-08-30&rft.volume=11&rft.issue=9&rft.spage=44&rft.epage=46&rft.pages=44-46&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.G9243.0811922&rft_dat=%3Ccrossref%3E10_35940_ijitee_G9243_0811922%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true