Loading…
GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease
Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integ...
Saved in:
Published in: | International journal of innovative technology and exploring engineering 2022-08, Vol.11 (9), p.44-46 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063 |
---|---|
cites | cdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063 |
container_end_page | 46 |
container_issue | 9 |
container_start_page | 44 |
container_title | International journal of innovative technology and exploring engineering |
container_volume | 11 |
creator | Devadiga, Nithyananda B K N, Akshatha |
description | Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well. |
doi_str_mv | 10.35940/ijitee.G9243.0811922 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijitee_G9243_0811922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijitee_G9243_0811922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</originalsourceid><addsrcrecordid>eNpN0M1OAjEYheHGaCJRLsGkNzDY35np0qAiyaBGcT35aL-BIhRtSwh3LwEWrs5ZvYuHkDvOBlIbxe790mfEwcgIJQes5twIcUF6QlR1IVmlL__9a9JPackY41LxujQ9sh41wwmF4GjzOZ3QD7TbGDFk-orbCKvD5N0mfic6DhnnETI6uvN5QSdgFz4gbRBi8GFOp2gXwf9uMdG8oWN3iPhuT99XcKg9-oSQ8JZcdbBK2D_vDfl6fpoOX4rmbTQePjSF5UqLQii0RkiBXdkxYwSTXIFylhmtKi5nunMWgEOJxtW1s5UwDKyrOu1maFgpb4g-dW3cpBSxa3-iX0Pct5y1R7b2xNYe2dozm_wDQidjFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Devadiga, Nithyananda B ; K N, Akshatha</creator><creatorcontrib>Devadiga, Nithyananda B ; K N, Akshatha ; Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India ; Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><description>Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.</description><identifier>ISSN: 2278-3075</identifier><identifier>EISSN: 2278-3075</identifier><identifier>DOI: 10.35940/ijitee.G9243.0811922</identifier><language>eng</language><ispartof>International journal of innovative technology and exploring engineering, 2022-08, Vol.11 (9), p.44-46</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</citedby><cites>FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Devadiga, Nithyananda B</creatorcontrib><creatorcontrib>K N, Akshatha</creatorcontrib><creatorcontrib>Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><creatorcontrib>Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><title>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</title><title>International journal of innovative technology and exploring engineering</title><description>Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.</description><issn>2278-3075</issn><issn>2278-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0M1OAjEYheHGaCJRLsGkNzDY35np0qAiyaBGcT35aL-BIhRtSwh3LwEWrs5ZvYuHkDvOBlIbxe790mfEwcgIJQes5twIcUF6QlR1IVmlL__9a9JPackY41LxujQ9sh41wwmF4GjzOZ3QD7TbGDFk-orbCKvD5N0mfic6DhnnETI6uvN5QSdgFz4gbRBi8GFOp2gXwf9uMdG8oWN3iPhuT99XcKg9-oSQ8JZcdbBK2D_vDfl6fpoOX4rmbTQePjSF5UqLQii0RkiBXdkxYwSTXIFylhmtKi5nunMWgEOJxtW1s5UwDKyrOu1maFgpb4g-dW3cpBSxa3-iX0Pct5y1R7b2xNYe2dozm_wDQidjFg</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Devadiga, Nithyananda B</creator><creator>K N, Akshatha</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220830</creationdate><title>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</title><author>Devadiga, Nithyananda B ; K N, Akshatha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Devadiga, Nithyananda B</creatorcontrib><creatorcontrib>K N, Akshatha</creatorcontrib><creatorcontrib>Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><creatorcontrib>Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of innovative technology and exploring engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devadiga, Nithyananda B</au><au>K N, Akshatha</au><aucorp>Department of Botany, RN Shetty PU College, Kundapura (Karnataka), India</aucorp><aucorp>Department of Computer Science, R N Shetty PU College, Kundapura (Karnataka), India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease</atitle><jtitle>International journal of innovative technology and exploring engineering</jtitle><date>2022-08-30</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>44</spage><epage>46</epage><pages>44-46</pages><issn>2278-3075</issn><eissn>2278-3075</eissn><abstract>Plant diseases are very impactful towards the overall effectiveness and quality management of the agricultural sector. In recent years, deep learning methods have been used as a way to identify these diseases, based on neural networks. The study presents GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning towards the identification of plant diseases. It has been found that the process is very accurate and can assess diverse plants disease characteristics dataset as well.</abstract><doi>10.35940/ijitee.G9243.0811922</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2278-3075 |
ispartof | International journal of innovative technology and exploring engineering, 2022-08, Vol.11 (9), p.44-46 |
issn | 2278-3075 2278-3075 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijitee_G9243_0811922 |
source | ROAD: Directory of Open Access Scholarly Resources |
title | GLCM and LSTM Recurrent Neural Networks Integrated with Machine Learning Techniques to Identify Plant Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLCM%20and%20LSTM%20Recurrent%20Neural%20Networks%20Integrated%20with%20Machine%20Learning%20Techniques%20to%20Identify%20Plant%20Disease&rft.jtitle=International%20journal%20of%20innovative%20technology%20and%20exploring%20engineering&rft.au=Devadiga,%20Nithyananda%20B&rft.aucorp=Department%20of%20Botany,%20RN%20Shetty%20PU%20College,%20Kundapura%20(Karnataka),%20India&rft.date=2022-08-30&rft.volume=11&rft.issue=9&rft.spage=44&rft.epage=46&rft.pages=44-46&rft.issn=2278-3075&rft.eissn=2278-3075&rft_id=info:doi/10.35940/ijitee.G9243.0811922&rft_dat=%3Ccrossref%3E10_35940_ijitee_G9243_0811922%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1452-24ec9232ef6f09920314a4dc0954713b5fdcaa1a6e9d88dc7290acd7f5dbe9063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |