Loading…
Data in Data Warehouse and its Qualities Issues
Data quality (DQ) is as old as the data is. In last few years it is found that DQ can’t be ignored during the process of data warehouse (DW) construction and utilization as it is the major and critical issue for knowledge experts, workers and decision makers who test and query the data for organizat...
Saved in:
Published in: | International journal of innovative technology and exploring engineering 2019-07, Vol.8 (9), p.1753-1756 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data quality (DQ) is as old as the data is. In last few years it is found that DQ can’t be ignored during the process of data warehouse (DW) construction and utilization as it is the major and critical issue for knowledge experts, workers and decision makers who test and query the data for organizational trust and customer satisfaction. Low data quality will lead to high costs, loss in the supply chain and degrade customer relationship management. Hence to ensure the quality before using the data in DW, CRM (Customer Relationship Management), ERP (Enterprise Resource Planning)or business analytics application, it needs to be analyzed and cleansed. In this, we are going to find out the problem regarding dirty data and try to solve them. |
---|---|
ISSN: | 2278-3075 2278-3075 |
DOI: | 10.35940/ijitee.I8629.078919 |