Loading…
Influence of Tool Pin Profile and Tool Rotating Speed on Mechanical Properties of Al6082 Alloy
Friction stir welding is a solid state welding which uses non consumable welding tool. It is an automatic process which generally performs on the vertical milling machine. In this type of welding, the relative motion between the tools and work piece creates heat which uses the region of work piece t...
Saved in:
Published in: | International journal of innovative technology and exploring engineering 2019-10, Vol.8 (12), p.3342-3345 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Friction stir welding is a solid state welding which uses non consumable welding tool. It is an automatic process which generally performs on the vertical milling machine. In this type of welding, the relative motion between the tools and work piece creates heat which uses the region of work piece to be welded get softened and to joint the two work pieces. Friction stir welding process is more reliable for the materials which are generally non heat treatable. In this present investigation it will observe that how the rotational speeds of the tool and different shapes of the tool pins effects the mechanical properties of the aluminium alloy 6082. For this purpose three tools with different profiles, i.e triangular, cylindrical and square was designed and fabricated. At three different rotational speeds of 560 rpm, 900 rpm, 1800 rpm work pieces are joined using vertical milling machine. Specimens are prepared and tested for mechanical properties, tensile, impact, and hardness tests are performed and to detect the defects and voids x-ray test performed on the weld joints. And it was observed that highest tensile strength was presented when the square pin tool used at 560 rpm. The rotational speed increased mechanical properties are reducing significantly. |
---|---|
ISSN: | 2278-3075 2278-3075 |
DOI: | 10.35940/ijitee.L2832.1081219 |