Loading…

On approximating fixed points of strictly pseudocontractive mappings in metric spaces

In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various character...

Full description

Saved in:
Bibliographic Details
Published in:Carpathian Journal of Mathematics 2024-01, Vol.40 (2), p.419-430
Main Authors: SALISU, SANI, BERINDE, VASILE, SRIWONGSA, SONGPON, KUMAM, POOM
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 430
container_issue 2
container_start_page 419
container_title Carpathian Journal of Mathematics
container_volume 40
creator SALISU, SANI
BERINDE, VASILE
SRIWONGSA, SONGPON
KUMAM, POOM
description In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.
doi_str_mv 10.37193/CJM.2024.02.12
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37193_CJM_2024_02_12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37193_CJM_2024_02_12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-b65c470e1f3d77e967c3d3fb1229fb0affa4bd7f4815fb411aee6eb195af256f3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpmq1_IKnHdmJniSqeKuqGri3H8SCj5iHboPbvSaGruYs5V7qHkHtgpVDQiPXm7b3kjMuS8RL4FVmAlqKQksH1nCstC64ruCWrlL4YY6A1a0S9IPvdQO00xfEYepvD8EkxHH1HpzEMOdERacoxuHw40Sn5725045CjdTn8eNrP5IwkGgba-_MfTZN1Pt2RG7SH5FeXuyT7p8ePzUux3T2_bh62hYOmykVbV04q5gFFp5RvauVEJ7AFzhtsmUW0su0USg0VthLAel_7dmYt8qpGsSTr_14Xx5SiRzPFeUc8GWDmT4yZxZizGMO4AS5-ATP9WKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>SALISU, SANI ; BERINDE, VASILE ; SRIWONGSA, SONGPON ; KUMAM, POOM</creator><creatorcontrib>SALISU, SANI ; BERINDE, VASILE ; SRIWONGSA, SONGPON ; KUMAM, POOM ; CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND ; CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND ; DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA ; DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</creatorcontrib><description>In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.</description><identifier>ISSN: 1584-2851</identifier><identifier>EISSN: 1843-4401</identifier><identifier>DOI: 10.37193/CJM.2024.02.12</identifier><language>eng</language><ispartof>Carpathian Journal of Mathematics, 2024-01, Vol.40 (2), p.419-430</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>SALISU, SANI</creatorcontrib><creatorcontrib>BERINDE, VASILE</creatorcontrib><creatorcontrib>SRIWONGSA, SONGPON</creatorcontrib><creatorcontrib>KUMAM, POOM</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</creatorcontrib><title>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</title><title>Carpathian Journal of Mathematics</title><description>In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.</description><issn>1584-2851</issn><issn>1843-4401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EElXpmq1_IKnHdmJniSqeKuqGri3H8SCj5iHboPbvSaGruYs5V7qHkHtgpVDQiPXm7b3kjMuS8RL4FVmAlqKQksH1nCstC64ruCWrlL4YY6A1a0S9IPvdQO00xfEYepvD8EkxHH1HpzEMOdERacoxuHw40Sn5725045CjdTn8eNrP5IwkGgba-_MfTZN1Pt2RG7SH5FeXuyT7p8ePzUux3T2_bh62hYOmykVbV04q5gFFp5RvauVEJ7AFzhtsmUW0su0USg0VthLAel_7dmYt8qpGsSTr_14Xx5SiRzPFeUc8GWDmT4yZxZizGMO4AS5-ATP9WKk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>SALISU, SANI</creator><creator>BERINDE, VASILE</creator><creator>SRIWONGSA, SONGPON</creator><creator>KUMAM, POOM</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</title><author>SALISU, SANI ; BERINDE, VASILE ; SRIWONGSA, SONGPON ; KUMAM, POOM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-b65c470e1f3d77e967c3d3fb1229fb0affa4bd7f4815fb411aee6eb195af256f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SALISU, SANI</creatorcontrib><creatorcontrib>BERINDE, VASILE</creatorcontrib><creatorcontrib>SRIWONGSA, SONGPON</creatorcontrib><creatorcontrib>KUMAM, POOM</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</creatorcontrib><collection>CrossRef</collection><jtitle>Carpathian Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SALISU, SANI</au><au>BERINDE, VASILE</au><au>SRIWONGSA, SONGPON</au><au>KUMAM, POOM</au><aucorp>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</aucorp><aucorp>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) &amp; KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</aucorp><aucorp>DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA</aucorp><aucorp>DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</atitle><jtitle>Carpathian Journal of Mathematics</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><spage>419</spage><epage>430</epage><pages>419-430</pages><issn>1584-2851</issn><eissn>1843-4401</eissn><abstract>In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.</abstract><doi>10.37193/CJM.2024.02.12</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1584-2851
ispartof Carpathian Journal of Mathematics, 2024-01, Vol.40 (2), p.419-430
issn 1584-2851
1843-4401
language eng
recordid cdi_crossref_primary_10_37193_CJM_2024_02_12
source JSTOR Archival Journals and Primary Sources Collection
title On approximating fixed points of strictly pseudocontractive mappings in metric spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20approximating%20fixed%20points%20of%20strictly%20pseudocontractive%20mappings%20in%20metric%20spaces&rft.jtitle=Carpathian%20Journal%20of%20Mathematics&rft.au=SALISU,%20SANI&rft.aucorp=CENTER%20OF%20EXCELLENCE%20IN%20THEORETICAL%20AND%20COMPUTATIONA%20L%20SCIENCE%20(TACS-COE)%20&%20KMUTT%20FIXED%20POINT%20RESEARCH%20LABORATORY,%20ROOM%20SCL%20802,%20FIXED%20POINT%20LABORATORY%20SCIENCE%20LABORATORY%20BUILDING,%20DEPARTMENTS%20OF%20MATHEMATIC,%20FACULTY%20OF%20SCIENCE%20KING%20MONGKUT%E2%80%99S%20UNIVERSITY%20OF%20TECHNOLOGY%20THONBURI%20(KMUTT),%20126%20PRACHA-UTHIT%20ROAD%20BANG%20MOD,%20THUNG%20KHRU,%20BANGKOK%2010140,%20THAILAND&rft.date=2024-01-01&rft.volume=40&rft.issue=2&rft.spage=419&rft.epage=430&rft.pages=419-430&rft.issn=1584-2851&rft.eissn=1843-4401&rft_id=info:doi/10.37193/CJM.2024.02.12&rft_dat=%3Ccrossref%3E10_37193_CJM_2024_02_12%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-b65c470e1f3d77e967c3d3fb1229fb0affa4bd7f4815fb411aee6eb195af256f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true