Loading…
On approximating fixed points of strictly pseudocontractive mappings in metric spaces
In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various character...
Saved in:
Published in: | Carpathian Journal of Mathematics 2024-01, Vol.40 (2), p.419-430 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 430 |
container_issue | 2 |
container_start_page | 419 |
container_title | Carpathian Journal of Mathematics |
container_volume | 40 |
creator | SALISU, SANI BERINDE, VASILE SRIWONGSA, SONGPON KUMAM, POOM |
description | In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces. |
doi_str_mv | 10.37193/CJM.2024.02.12 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37193_CJM_2024_02_12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37193_CJM_2024_02_12</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-b65c470e1f3d77e967c3d3fb1229fb0affa4bd7f4815fb411aee6eb195af256f3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpmq1_IKnHdmJniSqeKuqGri3H8SCj5iHboPbvSaGruYs5V7qHkHtgpVDQiPXm7b3kjMuS8RL4FVmAlqKQksH1nCstC64ruCWrlL4YY6A1a0S9IPvdQO00xfEYepvD8EkxHH1HpzEMOdERacoxuHw40Sn5725045CjdTn8eNrP5IwkGgba-_MfTZN1Pt2RG7SH5FeXuyT7p8ePzUux3T2_bh62hYOmykVbV04q5gFFp5RvauVEJ7AFzhtsmUW0su0USg0VthLAel_7dmYt8qpGsSTr_14Xx5SiRzPFeUc8GWDmT4yZxZizGMO4AS5-ATP9WKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>SALISU, SANI ; BERINDE, VASILE ; SRIWONGSA, SONGPON ; KUMAM, POOM</creator><creatorcontrib>SALISU, SANI ; BERINDE, VASILE ; SRIWONGSA, SONGPON ; KUMAM, POOM ; CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND ; CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND ; DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA ; DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</creatorcontrib><description>In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.</description><identifier>ISSN: 1584-2851</identifier><identifier>EISSN: 1843-4401</identifier><identifier>DOI: 10.37193/CJM.2024.02.12</identifier><language>eng</language><ispartof>Carpathian Journal of Mathematics, 2024-01, Vol.40 (2), p.419-430</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>SALISU, SANI</creatorcontrib><creatorcontrib>BERINDE, VASILE</creatorcontrib><creatorcontrib>SRIWONGSA, SONGPON</creatorcontrib><creatorcontrib>KUMAM, POOM</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</creatorcontrib><title>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</title><title>Carpathian Journal of Mathematics</title><description>In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.</description><issn>1584-2851</issn><issn>1843-4401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EElXpmq1_IKnHdmJniSqeKuqGri3H8SCj5iHboPbvSaGruYs5V7qHkHtgpVDQiPXm7b3kjMuS8RL4FVmAlqKQksH1nCstC64ruCWrlL4YY6A1a0S9IPvdQO00xfEYepvD8EkxHH1HpzEMOdERacoxuHw40Sn5725045CjdTn8eNrP5IwkGgba-_MfTZN1Pt2RG7SH5FeXuyT7p8ePzUux3T2_bh62hYOmykVbV04q5gFFp5RvauVEJ7AFzhtsmUW0su0USg0VthLAel_7dmYt8qpGsSTr_14Xx5SiRzPFeUc8GWDmT4yZxZizGMO4AS5-ATP9WKk</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>SALISU, SANI</creator><creator>BERINDE, VASILE</creator><creator>SRIWONGSA, SONGPON</creator><creator>KUMAM, POOM</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</title><author>SALISU, SANI ; BERINDE, VASILE ; SRIWONGSA, SONGPON ; KUMAM, POOM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-b65c470e1f3d77e967c3d3fb1229fb0affa4bd7f4815fb411aee6eb195af256f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SALISU, SANI</creatorcontrib><creatorcontrib>BERINDE, VASILE</creatorcontrib><creatorcontrib>SRIWONGSA, SONGPON</creatorcontrib><creatorcontrib>KUMAM, POOM</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA</creatorcontrib><creatorcontrib>DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</creatorcontrib><collection>CrossRef</collection><jtitle>Carpathian Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SALISU, SANI</au><au>BERINDE, VASILE</au><au>SRIWONGSA, SONGPON</au><au>KUMAM, POOM</au><aucorp>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONA L SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</aucorp><aucorp>CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE) & KMUTT FIXED POINT RESEARCH LABORATORY, ROOM SCL 802, FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING, DEPARTMENTS OF MATHEMATIC, FACULTY OF SCIENCE KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT), 126 PRACHA-UTHIT ROAD BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND</aucorp><aucorp>DEPARTMENT OF MATHEMATICS FACULTY OF NATURAL AND APPLIED SCIENCES SULE LAMIDO UNIVERSITY KAFIN HAUSA JIGAWA, NIGERIA</aucorp><aucorp>DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE NORTH UNIVERSITY CENTER AT BAIA MARE TECHNICAL UNIVERSITY OF CLUJ-NAPOCA VICTORIEI 76, 430122 BAIA MARE, ROMANIA AND ACADEMY OF ROMANIAN SCIENTISTS ILFOV STR. NO. 3 050045 BUCHAREST, ROMANIA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On approximating fixed points of strictly pseudocontractive mappings in metric spaces</atitle><jtitle>Carpathian Journal of Mathematics</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>40</volume><issue>2</issue><spage>419</spage><epage>430</epage><pages>419-430</pages><issn>1584-2851</issn><eissn>1843-4401</eissn><abstract>In this work, we analyse the class of strictly pseudocontractive mappings in general metric spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex- plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif- ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property, and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability in the context of fixed point theory in metric spaces.</abstract><doi>10.37193/CJM.2024.02.12</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1584-2851 |
ispartof | Carpathian Journal of Mathematics, 2024-01, Vol.40 (2), p.419-430 |
issn | 1584-2851 1843-4401 |
language | eng |
recordid | cdi_crossref_primary_10_37193_CJM_2024_02_12 |
source | JSTOR Archival Journals and Primary Sources Collection |
title | On approximating fixed points of strictly pseudocontractive mappings in metric spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20approximating%20fixed%20points%20of%20strictly%20pseudocontractive%20mappings%20in%20metric%20spaces&rft.jtitle=Carpathian%20Journal%20of%20Mathematics&rft.au=SALISU,%20SANI&rft.aucorp=CENTER%20OF%20EXCELLENCE%20IN%20THEORETICAL%20AND%20COMPUTATIONA%20L%20SCIENCE%20(TACS-COE)%20&%20KMUTT%20FIXED%20POINT%20RESEARCH%20LABORATORY,%20ROOM%20SCL%20802,%20FIXED%20POINT%20LABORATORY%20SCIENCE%20LABORATORY%20BUILDING,%20DEPARTMENTS%20OF%20MATHEMATIC,%20FACULTY%20OF%20SCIENCE%20KING%20MONGKUT%E2%80%99S%20UNIVERSITY%20OF%20TECHNOLOGY%20THONBURI%20(KMUTT),%20126%20PRACHA-UTHIT%20ROAD%20BANG%20MOD,%20THUNG%20KHRU,%20BANGKOK%2010140,%20THAILAND&rft.date=2024-01-01&rft.volume=40&rft.issue=2&rft.spage=419&rft.epage=430&rft.pages=419-430&rft.issn=1584-2851&rft.eissn=1843-4401&rft_id=info:doi/10.37193/CJM.2024.02.12&rft_dat=%3Ccrossref%3E10_37193_CJM_2024_02_12%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-b65c470e1f3d77e967c3d3fb1229fb0affa4bd7f4815fb411aee6eb195af256f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |