Loading…

Tight Upper Bounds for the Domination Numbers of Graphs with Given Order and Minimum Degree

Let $\gamma(n,\delta)$ denote the maximum possible domination number of a graph with $n$ vertices and minimum degree $\delta$. Using known results we determine $\gamma(n,\delta)$ for $\delta = 0, 1, 2, 3$, $n \ge \delta + 1$ and for all $n$, $\delta$ where $\delta = n-k$ and $n$ is sufficiently larg...

Full description

Saved in:
Bibliographic Details
Published in:The Electronic journal of combinatorics 1997-10, Vol.4 (1)
Main Authors: Clark, W. Edwin, Dunning, Larry A.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c134t-172e326cd257e0925daf3959fbf4466fce53009057f86b59f003598edf9f159e3
cites
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 4
creator Clark, W. Edwin
Dunning, Larry A.
description Let $\gamma(n,\delta)$ denote the maximum possible domination number of a graph with $n$ vertices and minimum degree $\delta$. Using known results we determine $\gamma(n,\delta)$ for $\delta = 0, 1, 2, 3$, $n \ge \delta + 1$ and for all $n$, $\delta$ where $\delta = n-k$ and $n$ is sufficiently large relative to $k$. We also obtain $\gamma(n,\delta)$ for all remaining values of $(n,\delta)$ when $n \le 14$ and all but 6 values of $(n,\delta)$ when $n = 15$ or 16.
doi_str_mv 10.37236/1311
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_1311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_1311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-172e326cd257e0925daf3959fbf4466fce53009057f86b59f003598edf9f159e3</originalsourceid><addsrcrecordid>eNpNkL1OwzAYRS0EEqX0Hb6FMeCfOI5HaCEgFbq0E0OUxJ8bI-JEdgLi7Vt-BqZ7daVzh0PIgtFrobjIbphg7ITMGFUqyTXPTv_1c3IR4xuljGstZ-R16_btCLthwAB3_eRNBNsHGFuEVd85X42u9_AydTWGCL2FIlRDG-HTjS0U7gM9bII5wpU38Oy866YOVrgPiJfkzFbvERd_OSe7h_vt8jFZb4qn5e06aZhIx4QpjoJnjeFSIdVcmsoKLbWtbZpmmW1QCko1lcrmWX3cKRVS52istkxqFHNy9fvbhD7GgLYcguuq8FUyWv4YKb-NiAPxoVHL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tight Upper Bounds for the Domination Numbers of Graphs with Given Order and Minimum Degree</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Clark, W. Edwin ; Dunning, Larry A.</creator><creatorcontrib>Clark, W. Edwin ; Dunning, Larry A.</creatorcontrib><description>Let $\gamma(n,\delta)$ denote the maximum possible domination number of a graph with $n$ vertices and minimum degree $\delta$. Using known results we determine $\gamma(n,\delta)$ for $\delta = 0, 1, 2, 3$, $n \ge \delta + 1$ and for all $n$, $\delta$ where $\delta = n-k$ and $n$ is sufficiently large relative to $k$. We also obtain $\gamma(n,\delta)$ for all remaining values of $(n,\delta)$ when $n \le 14$ and all but 6 values of $(n,\delta)$ when $n = 15$ or 16.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/1311</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 1997-10, Vol.4 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c134t-172e326cd257e0925daf3959fbf4466fce53009057f86b59f003598edf9f159e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Clark, W. Edwin</creatorcontrib><creatorcontrib>Dunning, Larry A.</creatorcontrib><title>Tight Upper Bounds for the Domination Numbers of Graphs with Given Order and Minimum Degree</title><title>The Electronic journal of combinatorics</title><description>Let $\gamma(n,\delta)$ denote the maximum possible domination number of a graph with $n$ vertices and minimum degree $\delta$. Using known results we determine $\gamma(n,\delta)$ for $\delta = 0, 1, 2, 3$, $n \ge \delta + 1$ and for all $n$, $\delta$ where $\delta = n-k$ and $n$ is sufficiently large relative to $k$. We also obtain $\gamma(n,\delta)$ for all remaining values of $(n,\delta)$ when $n \le 14$ and all but 6 values of $(n,\delta)$ when $n = 15$ or 16.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAYRS0EEqX0Hb6FMeCfOI5HaCEgFbq0E0OUxJ8bI-JEdgLi7Vt-BqZ7daVzh0PIgtFrobjIbphg7ITMGFUqyTXPTv_1c3IR4xuljGstZ-R16_btCLthwAB3_eRNBNsHGFuEVd85X42u9_AydTWGCL2FIlRDG-HTjS0U7gM9bII5wpU38Oy866YOVrgPiJfkzFbvERd_OSe7h_vt8jFZb4qn5e06aZhIx4QpjoJnjeFSIdVcmsoKLbWtbZpmmW1QCko1lcrmWX3cKRVS52istkxqFHNy9fvbhD7GgLYcguuq8FUyWv4YKb-NiAPxoVHL</recordid><startdate>19971027</startdate><enddate>19971027</enddate><creator>Clark, W. Edwin</creator><creator>Dunning, Larry A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19971027</creationdate><title>Tight Upper Bounds for the Domination Numbers of Graphs with Given Order and Minimum Degree</title><author>Clark, W. Edwin ; Dunning, Larry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-172e326cd257e0925daf3959fbf4466fce53009057f86b59f003598edf9f159e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, W. Edwin</creatorcontrib><creatorcontrib>Dunning, Larry A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, W. Edwin</au><au>Dunning, Larry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Upper Bounds for the Domination Numbers of Graphs with Given Order and Minimum Degree</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>1997-10-27</date><risdate>1997</risdate><volume>4</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Let $\gamma(n,\delta)$ denote the maximum possible domination number of a graph with $n$ vertices and minimum degree $\delta$. Using known results we determine $\gamma(n,\delta)$ for $\delta = 0, 1, 2, 3$, $n \ge \delta + 1$ and for all $n$, $\delta$ where $\delta = n-k$ and $n$ is sufficiently large relative to $k$. We also obtain $\gamma(n,\delta)$ for all remaining values of $(n,\delta)$ when $n \le 14$ and all but 6 values of $(n,\delta)$ when $n = 15$ or 16.</abstract><doi>10.37236/1311</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 1997-10, Vol.4 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_1311
source Freely Accessible Science Journals - check A-Z of ejournals
title Tight Upper Bounds for the Domination Numbers of Graphs with Given Order and Minimum Degree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Upper%20Bounds%20for%20the%20Domination%20Numbers%20of%20Graphs%20with%20Given%20Order%20and%20Minimum%20Degree&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Clark,%20W.%20Edwin&rft.date=1997-10-27&rft.volume=4&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/1311&rft_dat=%3Ccrossref%3E10_37236_1311%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c134t-172e326cd257e0925daf3959fbf4466fce53009057f86b59f003598edf9f159e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true