Loading…

Values of Domination Numbers of the Queen's Graph

The queen's graph $Q_{n}$ has the squares of the $n \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let $\gamma (Q_{n})$ and $i(Q_{n})$ be the minimum sizes of a dominating set and an independent dominating set of $Q_{n}$, respect...

Full description

Saved in:
Bibliographic Details
Published in:The Electronic journal of combinatorics 2001-03, Vol.8 (1)
Main Authors: Östergård, Patric R. J., Weakley, William D.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c134t-cf9bab8513b8be27e69c6e6d9a948d13ded94ce181b3aaee685a8821b5842ed53
cites
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 8
creator Östergård, Patric R. J.
Weakley, William D.
description The queen's graph $Q_{n}$ has the squares of the $n \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let $\gamma (Q_{n})$ and $i(Q_{n})$ be the minimum sizes of a dominating set and an independent dominating set of $Q_{n}$, respectively. Recent results, the Parallelogram Law, and a search algorithm adapted from Knuth are used to find dominating sets. New values and bounds:(A) $\gamma (Q_n) = \lceil n/2 \rceil$ is shown for 17 values of $n$ (in particular, the set of values for which the conjecture $\gamma (Q_{4k+1}) = 2k + 1$ is known to hold is extended to $k \leq 32$);(B) $i(Q_n) = \lceil n/2 \rceil$ is shown for 11 values of $n$, including 5 of those from (A);(C) One or both of $\gamma (Q_n)$ and $i(Q_n)$ is shown to lie in $\{ \lceil n/2 \rceil $, $\lceil n/2 \rceil + 1 \}$ for 85 values of $n$ distinct from those in (A) and (B).Combined with previously published work, these results imply that for $n \leq 120$, each of $\gamma (Q_n)$ and $i(Q_n)$ is either known, or known to have one of two values.Also, the general bounds $\gamma (Q_n) \leq 69n/133 + O(1)$ and $i(Q_n) \leq 61n/111 + O(1)$ are established. Comment added August 25th 2003.Corrigendum added October 5th 2017. 
doi_str_mv 10.37236/1573
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_1573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_1573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c134t-cf9bab8513b8be27e69c6e6d9a948d13ded94ce181b3aaee685a8821b5842ed53</originalsourceid><addsrcrecordid>eNpNj81Kw0AURgdRsNa-QzbiKjp3JvO3lKpVKJaCug13Zm5opEnKTLLw7cXWhavzcRYfHMYWwO-kEVLfgzLyjM2AG1NaJ_T5v33JrnL-4hyEc2rG4BP3E-ViaIrHoWt7HNuhL96mzlM62nFHxXYi6m9zsUp42F2ziwb3mRZ_nLOP56f35Uu53qxelw_rMoCsxjI0zqO3CqS3noQh7YImHR26ykaQkaKrAoEFLxGJtFVorQCvbCUoKjlnN6ffkIacEzX1IbUdpu8aeH3srH875Q_26kO2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Values of Domination Numbers of the Queen's Graph</title><source>Freely Accessible Journals</source><creator>Östergård, Patric R. J. ; Weakley, William D.</creator><creatorcontrib>Östergård, Patric R. J. ; Weakley, William D.</creatorcontrib><description>The queen's graph $Q_{n}$ has the squares of the $n \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let $\gamma (Q_{n})$ and $i(Q_{n})$ be the minimum sizes of a dominating set and an independent dominating set of $Q_{n}$, respectively. Recent results, the Parallelogram Law, and a search algorithm adapted from Knuth are used to find dominating sets. New values and bounds:(A) $\gamma (Q_n) = \lceil n/2 \rceil$ is shown for 17 values of $n$ (in particular, the set of values for which the conjecture $\gamma (Q_{4k+1}) = 2k + 1$ is known to hold is extended to $k \leq 32$);(B) $i(Q_n) = \lceil n/2 \rceil$ is shown for 11 values of $n$, including 5 of those from (A);(C) One or both of $\gamma (Q_n)$ and $i(Q_n)$ is shown to lie in $\{ \lceil n/2 \rceil $, $\lceil n/2 \rceil + 1 \}$ for 85 values of $n$ distinct from those in (A) and (B).Combined with previously published work, these results imply that for $n \leq 120$, each of $\gamma (Q_n)$ and $i(Q_n)$ is either known, or known to have one of two values.Also, the general bounds $\gamma (Q_n) \leq 69n/133 + O(1)$ and $i(Q_n) \leq 61n/111 + O(1)$ are established. Comment added August 25th 2003.Corrigendum added October 5th 2017. </description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/1573</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2001-03, Vol.8 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c134t-cf9bab8513b8be27e69c6e6d9a948d13ded94ce181b3aaee685a8821b5842ed53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Östergård, Patric R. J.</creatorcontrib><creatorcontrib>Weakley, William D.</creatorcontrib><title>Values of Domination Numbers of the Queen's Graph</title><title>The Electronic journal of combinatorics</title><description>The queen's graph $Q_{n}$ has the squares of the $n \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let $\gamma (Q_{n})$ and $i(Q_{n})$ be the minimum sizes of a dominating set and an independent dominating set of $Q_{n}$, respectively. Recent results, the Parallelogram Law, and a search algorithm adapted from Knuth are used to find dominating sets. New values and bounds:(A) $\gamma (Q_n) = \lceil n/2 \rceil$ is shown for 17 values of $n$ (in particular, the set of values for which the conjecture $\gamma (Q_{4k+1}) = 2k + 1$ is known to hold is extended to $k \leq 32$);(B) $i(Q_n) = \lceil n/2 \rceil$ is shown for 11 values of $n$, including 5 of those from (A);(C) One or both of $\gamma (Q_n)$ and $i(Q_n)$ is shown to lie in $\{ \lceil n/2 \rceil $, $\lceil n/2 \rceil + 1 \}$ for 85 values of $n$ distinct from those in (A) and (B).Combined with previously published work, these results imply that for $n \leq 120$, each of $\gamma (Q_n)$ and $i(Q_n)$ is either known, or known to have one of two values.Also, the general bounds $\gamma (Q_n) \leq 69n/133 + O(1)$ and $i(Q_n) \leq 61n/111 + O(1)$ are established. Comment added August 25th 2003.Corrigendum added October 5th 2017. </description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpNj81Kw0AURgdRsNa-QzbiKjp3JvO3lKpVKJaCug13Zm5opEnKTLLw7cXWhavzcRYfHMYWwO-kEVLfgzLyjM2AG1NaJ_T5v33JrnL-4hyEc2rG4BP3E-ViaIrHoWt7HNuhL96mzlM62nFHxXYi6m9zsUp42F2ziwb3mRZ_nLOP56f35Uu53qxelw_rMoCsxjI0zqO3CqS3noQh7YImHR26ykaQkaKrAoEFLxGJtFVorQCvbCUoKjlnN6ffkIacEzX1IbUdpu8aeH3srH875Q_26kO2</recordid><startdate>20010326</startdate><enddate>20010326</enddate><creator>Östergård, Patric R. J.</creator><creator>Weakley, William D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010326</creationdate><title>Values of Domination Numbers of the Queen's Graph</title><author>Östergård, Patric R. J. ; Weakley, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c134t-cf9bab8513b8be27e69c6e6d9a948d13ded94ce181b3aaee685a8821b5842ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Östergård, Patric R. J.</creatorcontrib><creatorcontrib>Weakley, William D.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Östergård, Patric R. J.</au><au>Weakley, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Values of Domination Numbers of the Queen's Graph</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2001-03-26</date><risdate>2001</risdate><volume>8</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>The queen's graph $Q_{n}$ has the squares of the $n \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal. Let $\gamma (Q_{n})$ and $i(Q_{n})$ be the minimum sizes of a dominating set and an independent dominating set of $Q_{n}$, respectively. Recent results, the Parallelogram Law, and a search algorithm adapted from Knuth are used to find dominating sets. New values and bounds:(A) $\gamma (Q_n) = \lceil n/2 \rceil$ is shown for 17 values of $n$ (in particular, the set of values for which the conjecture $\gamma (Q_{4k+1}) = 2k + 1$ is known to hold is extended to $k \leq 32$);(B) $i(Q_n) = \lceil n/2 \rceil$ is shown for 11 values of $n$, including 5 of those from (A);(C) One or both of $\gamma (Q_n)$ and $i(Q_n)$ is shown to lie in $\{ \lceil n/2 \rceil $, $\lceil n/2 \rceil + 1 \}$ for 85 values of $n$ distinct from those in (A) and (B).Combined with previously published work, these results imply that for $n \leq 120$, each of $\gamma (Q_n)$ and $i(Q_n)$ is either known, or known to have one of two values.Also, the general bounds $\gamma (Q_n) \leq 69n/133 + O(1)$ and $i(Q_n) \leq 61n/111 + O(1)$ are established. Comment added August 25th 2003.Corrigendum added October 5th 2017. </abstract><doi>10.37236/1573</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2001-03, Vol.8 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_1573
source Freely Accessible Journals
title Values of Domination Numbers of the Queen's Graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Values%20of%20Domination%20Numbers%20of%20the%20Queen's%20Graph&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=%C3%96sterg%C3%A5rd,%20Patric%20R.%20J.&rft.date=2001-03-26&rft.volume=8&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/1573&rft_dat=%3Ccrossref%3E10_37236_1573%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c134t-cf9bab8513b8be27e69c6e6d9a948d13ded94ce181b3aaee685a8821b5842ed53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true