Loading…

Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions

A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama's identity, expressing the partition function of  six vertex model as the product of a $t$-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language...

Full description

Saved in:
Bibliographic Details
Published in:The Electronic journal of combinatorics 2015-06, Vol.22 (2)
Main Authors: Hamel, Angèle M., King, Ronald C.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-cfd0efedb813d018882ee854e9ea3179fa4bbc1c246b470f0847e6c7660f14093
cites
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 22
creator Hamel, Angèle M.
King, Ronald C.
description A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama's identity, expressing the partition function of  six vertex model as the product of a $t$-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language of primed shifted tableaux, with its proof based on the use of non-interesecting lattice paths.
doi_str_mv 10.37236/4971
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_4971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_4971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-cfd0efedb813d018882ee854e9ea3179fa4bbc1c246b470f0847e6c7660f14093</originalsourceid><addsrcrecordid>eNpNjzlPwzAYQC0EEqX0P3gIYgp8PupjYEAVgUqVWkSZI8eHCLQxsp0h_x5xDEzvTU96CC0I3DBJmbjlWpITNCMgZa00Faf__Bxd5PwOQKjWyxm628ePcTJHc53x2vmh9GXCISbcGFti6s0Bv9i3MeFqV2EzOFw9V7gZB1v6OORLdBbMIfvFH-fotXnYr57qzfZxvbrf1JYqWWobHPjgXacIc0CUUtR7teRee8OI1MHwrrPEUi46LiGA4tILK4WAQDhoNkdXv12bYs7Jh_Yz9UeTppZA-_Pcfj-zLzVQRrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions</title><source>Freely Accessible Journals</source><creator>Hamel, Angèle M. ; King, Ronald C.</creator><creatorcontrib>Hamel, Angèle M. ; King, Ronald C.</creatorcontrib><description>A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama's identity, expressing the partition function of  six vertex model as the product of a $t$-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language of primed shifted tableaux, with its proof based on the use of non-interesecting lattice paths.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/4971</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2015-06, Vol.22 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-cfd0efedb813d018882ee854e9ea3179fa4bbc1c246b470f0847e6c7660f14093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hamel, Angèle M.</creatorcontrib><creatorcontrib>King, Ronald C.</creatorcontrib><title>Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions</title><title>The Electronic journal of combinatorics</title><description>A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama's identity, expressing the partition function of  six vertex model as the product of a $t$-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language of primed shifted tableaux, with its proof based on the use of non-interesecting lattice paths.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNjzlPwzAYQC0EEqX0P3gIYgp8PupjYEAVgUqVWkSZI8eHCLQxsp0h_x5xDEzvTU96CC0I3DBJmbjlWpITNCMgZa00Faf__Bxd5PwOQKjWyxm628ePcTJHc53x2vmh9GXCISbcGFti6s0Bv9i3MeFqV2EzOFw9V7gZB1v6OORLdBbMIfvFH-fotXnYr57qzfZxvbrf1JYqWWobHPjgXacIc0CUUtR7teRee8OI1MHwrrPEUi46LiGA4tILK4WAQDhoNkdXv12bYs7Jh_Yz9UeTppZA-_Pcfj-zLzVQRrE</recordid><startdate>20150603</startdate><enddate>20150603</enddate><creator>Hamel, Angèle M.</creator><creator>King, Ronald C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150603</creationdate><title>Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions</title><author>Hamel, Angèle M. ; King, Ronald C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-cfd0efedb813d018882ee854e9ea3179fa4bbc1c246b470f0847e6c7660f14093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamel, Angèle M.</creatorcontrib><creatorcontrib>King, Ronald C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamel, Angèle M.</au><au>King, Ronald C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2015-06-03</date><risdate>2015</risdate><volume>22</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama's identity, expressing the partition function of  six vertex model as the product of a $t$-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language of primed shifted tableaux, with its proof based on the use of non-interesecting lattice paths.</abstract><doi>10.37236/4971</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2015-06, Vol.22 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_4971
source Freely Accessible Journals
title Tokuyama's Identity for Factorial Schur $P$ and $Q$ Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tokuyama's%20Identity%20for%20Factorial%20Schur%20$P$%20and%20$Q$%20Functions&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Hamel,%20Ang%C3%A8le%20M.&rft.date=2015-06-03&rft.volume=22&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/4971&rft_dat=%3Ccrossref%3E10_37236_4971%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-cfd0efedb813d018882ee854e9ea3179fa4bbc1c246b470f0847e6c7660f14093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true