Loading…
Stability for Intersecting Families in PGL(2,q)
We consider the action of the $2$-dimensional projective general linear group $PGL(2,q)$ on the projective line $PG(1,q)$. A subset $S$ of $PGL(2,q)$ is said to be an intersecting family if for every $g_1,g_2 \in S$, there exists $\alpha \in PG(1,q)$ such that $\alpha^{g_1}= \alpha^{g_2}$. It was pr...
Saved in:
Published in: | The Electronic journal of combinatorics 2015-12, Vol.22 (4) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-9017531fe305cb031aa1753fdc090ee056d566b741d188f9083f52aa90c91f083 |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 22 |
creator | Plaza, Rafael |
description | We consider the action of the $2$-dimensional projective general linear group $PGL(2,q)$ on the projective line $PG(1,q)$. A subset $S$ of $PGL(2,q)$ is said to be an intersecting family if for every $g_1,g_2 \in S$, there exists $\alpha \in PG(1,q)$ such that $\alpha^{g_1}= \alpha^{g_2}$. It was proved by Meagher and Spiga that the intersecting families of maximum size in $PGL(2,q)$ are precisely the cosets of point stabilizers. We prove that if an intersecting family $S \subset PGL(2,q)$ has size close to the maximum then it must be "close" in structure to a coset of a point stabilizer. This phenomenon is known as stability. We use this stability result proved here to show that if the size of $S$ is close enough to the maximum then $S$ must be contained in a coset of a point stabilizer. |
doi_str_mv | 10.37236/5401 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_5401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_5401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-9017531fe305cb031aa1753fdc090ee056d566b741d188f9083f52aa90c91f083</originalsourceid><addsrcrecordid>eNpNj8tqAjEUhkOxULW-QzaFCk49JzHJZFlErTCg0HY9ZDJJSdGxTbLx7b110dV_gx8-QkYIL1wxLqdiBnhH-ghKFaVmsvfPP5BBSt8AyLQWfTJ9z6YJu5CP1B8iXXfZxeRsDt0XXZr9eXGJho5uV9Uzm_yOH8m9N7vkRn86JJ_Lxcf8rag2q_X8tSosY5gLDagER-84CNsAR2MuhW8taHAOhGyFlI2aYYtl6TWU3AtmjAar0Z_TkDzdfm08pBSdr39i2Jt4rBHqK2V9oeQnlAFA3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability for Intersecting Families in PGL(2,q)</title><source>Freely Accessible Science Journals</source><creator>Plaza, Rafael</creator><creatorcontrib>Plaza, Rafael</creatorcontrib><description>We consider the action of the $2$-dimensional projective general linear group $PGL(2,q)$ on the projective line $PG(1,q)$. A subset $S$ of $PGL(2,q)$ is said to be an intersecting family if for every $g_1,g_2 \in S$, there exists $\alpha \in PG(1,q)$ such that $\alpha^{g_1}= \alpha^{g_2}$. It was proved by Meagher and Spiga that the intersecting families of maximum size in $PGL(2,q)$ are precisely the cosets of point stabilizers. We prove that if an intersecting family $S \subset PGL(2,q)$ has size close to the maximum then it must be "close" in structure to a coset of a point stabilizer. This phenomenon is known as stability. We use this stability result proved here to show that if the size of $S$ is close enough to the maximum then $S$ must be contained in a coset of a point stabilizer.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/5401</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2015-12, Vol.22 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-9017531fe305cb031aa1753fdc090ee056d566b741d188f9083f52aa90c91f083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Plaza, Rafael</creatorcontrib><title>Stability for Intersecting Families in PGL(2,q)</title><title>The Electronic journal of combinatorics</title><description>We consider the action of the $2$-dimensional projective general linear group $PGL(2,q)$ on the projective line $PG(1,q)$. A subset $S$ of $PGL(2,q)$ is said to be an intersecting family if for every $g_1,g_2 \in S$, there exists $\alpha \in PG(1,q)$ such that $\alpha^{g_1}= \alpha^{g_2}$. It was proved by Meagher and Spiga that the intersecting families of maximum size in $PGL(2,q)$ are precisely the cosets of point stabilizers. We prove that if an intersecting family $S \subset PGL(2,q)$ has size close to the maximum then it must be "close" in structure to a coset of a point stabilizer. This phenomenon is known as stability. We use this stability result proved here to show that if the size of $S$ is close enough to the maximum then $S$ must be contained in a coset of a point stabilizer.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj8tqAjEUhkOxULW-QzaFCk49JzHJZFlErTCg0HY9ZDJJSdGxTbLx7b110dV_gx8-QkYIL1wxLqdiBnhH-ghKFaVmsvfPP5BBSt8AyLQWfTJ9z6YJu5CP1B8iXXfZxeRsDt0XXZr9eXGJho5uV9Uzm_yOH8m9N7vkRn86JJ_Lxcf8rag2q_X8tSosY5gLDagER-84CNsAR2MuhW8taHAOhGyFlI2aYYtl6TWU3AtmjAar0Z_TkDzdfm08pBSdr39i2Jt4rBHqK2V9oeQnlAFA3Q</recordid><startdate>20151223</startdate><enddate>20151223</enddate><creator>Plaza, Rafael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151223</creationdate><title>Stability for Intersecting Families in PGL(2,q)</title><author>Plaza, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-9017531fe305cb031aa1753fdc090ee056d566b741d188f9083f52aa90c91f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaza, Rafael</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plaza, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability for Intersecting Families in PGL(2,q)</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2015-12-23</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We consider the action of the $2$-dimensional projective general linear group $PGL(2,q)$ on the projective line $PG(1,q)$. A subset $S$ of $PGL(2,q)$ is said to be an intersecting family if for every $g_1,g_2 \in S$, there exists $\alpha \in PG(1,q)$ such that $\alpha^{g_1}= \alpha^{g_2}$. It was proved by Meagher and Spiga that the intersecting families of maximum size in $PGL(2,q)$ are precisely the cosets of point stabilizers. We prove that if an intersecting family $S \subset PGL(2,q)$ has size close to the maximum then it must be "close" in structure to a coset of a point stabilizer. This phenomenon is known as stability. We use this stability result proved here to show that if the size of $S$ is close enough to the maximum then $S$ must be contained in a coset of a point stabilizer.</abstract><doi>10.37236/5401</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2015-12, Vol.22 (4) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_5401 |
source | Freely Accessible Science Journals |
title | Stability for Intersecting Families in PGL(2,q) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20for%20Intersecting%20Families%20in%20PGL(2,q)&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Plaza,%20Rafael&rft.date=2015-12-23&rft.volume=22&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/5401&rft_dat=%3Ccrossref%3E10_37236_5401%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-9017531fe305cb031aa1753fdc090ee056d566b741d188f9083f52aa90c91f083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |