Loading…
Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs
An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacenc...
Saved in:
Published in: | The Electronic journal of combinatorics 2011-08, Vol.18 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c219t-f107d73b9152b39da88a0c24d66d2d625b3c24eff5a2978c85580bab0a09ec583 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 18 |
creator | Hou, Yaoping Lei, Tiangang |
description | An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given. |
doi_str_mv | 10.37236/643 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-f107d73b9152b39da88a0c24d66d2d625b3c24eff5a2978c85580bab0a09ec583</originalsourceid><addsrcrecordid>eNpNT0tLw0AYXETB2vofcvAa3Uf3dSxB20Klgu05fPuiW9uk7C5I_r2hevA0MwwzzCA0I_iZScrEi5izGzQhWMpaaSpu__F79JDzEWNCteYTtGoOkMAWn2Iu0VYf_Wno-nOEU676UH1--e964Y5gfWeH6h1KitZfrW2KviveVcsEl0OeobswhvzjH07R_u1116zqzXa5bhab2lKiSx3GIU4yowmnhmkHSgG2dO6EcNQJyg0blQ-BA9VSWcW5wgYMBqy95YpN0dNvr019zsmH9pLiGdLQEtxe37fje_YDXzVLxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs</title><source>Freely Accessible Science Journals</source><creator>Hou, Yaoping ; Lei, Tiangang</creator><creatorcontrib>Hou, Yaoping ; Lei, Tiangang</creatorcontrib><description>An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/643</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2011-08, Vol.18 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-f107d73b9152b39da88a0c24d66d2d625b3c24eff5a2978c85580bab0a09ec583</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hou, Yaoping</creatorcontrib><creatorcontrib>Lei, Tiangang</creatorcontrib><title>Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs</title><title>The Electronic journal of combinatorics</title><description>An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNT0tLw0AYXETB2vofcvAa3Uf3dSxB20Klgu05fPuiW9uk7C5I_r2hevA0MwwzzCA0I_iZScrEi5izGzQhWMpaaSpu__F79JDzEWNCteYTtGoOkMAWn2Iu0VYf_Wno-nOEU676UH1--e964Y5gfWeH6h1KitZfrW2KviveVcsEl0OeobswhvzjH07R_u1116zqzXa5bhab2lKiSx3GIU4yowmnhmkHSgG2dO6EcNQJyg0blQ-BA9VSWcW5wgYMBqy95YpN0dNvr019zsmH9pLiGdLQEtxe37fje_YDXzVLxw</recordid><startdate>20110805</startdate><enddate>20110805</enddate><creator>Hou, Yaoping</creator><creator>Lei, Tiangang</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110805</creationdate><title>Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs</title><author>Hou, Yaoping ; Lei, Tiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-f107d73b9152b39da88a0c24d66d2d625b3c24eff5a2978c85580bab0a09ec583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yaoping</creatorcontrib><creatorcontrib>Lei, Tiangang</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yaoping</au><au>Lei, Tiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2011-08-05</date><risdate>2011</risdate><volume>18</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>An oriented graph $\overleftarrow{G}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge a direction so that $\overleftarrow{G}$ becomes a directed graph. $G$ is called the underlying graph of $\overleftarrow{G}$ and we denote by $S(\overleftarrow{G})$ the skew-adjacency matrix of $\overleftarrow{G}$ and its spectrum $Sp(\overleftarrow{G})$ is called the skew-spectrum of $\overleftarrow{G}$. In this paper, the coefficients of the characteristic polynomial of the skew-adjacency matrix $S(\overleftarrow{G}) $ are given in terms of $\overleftarrow{G}$ and as its applications, new combinatorial proofs of known results are obtained and new families of oriented bipartite graphs $\overleftarrow{G}$ with $Sp(\overleftarrow{G})={\bf i} Sp(G) $ are given.</abstract><doi>10.37236/643</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2011-08, Vol.18 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_643 |
source | Freely Accessible Science Journals |
title | Characteristic Polynomials of Skew-Adjacency Matrices of Oriented Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20Polynomials%20of%20Skew-Adjacency%20Matrices%20of%20Oriented%20Graphs&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Hou,%20Yaoping&rft.date=2011-08-05&rft.volume=18&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/643&rft_dat=%3Ccrossref%3E10_37236_643%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-f107d73b9152b39da88a0c24d66d2d625b3c24eff5a2978c85580bab0a09ec583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |