Loading…

On the Hyperbolicity Constant of Line Graphs

If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood...

Full description

Saved in:
Bibliographic Details
Published in:The Electronic journal of combinatorics 2011-10, Vol.18 (1)
Main Authors: Carballosa, Walter, Rodríguez, José M., Sigarreta, José M., Villeta, María
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c149t-2a66f6b8cbc7a76c27f5006a992633b886a3977cdb088718ff3862776a80727e3
cites
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 18
creator Carballosa, Walter
Rodríguez, José M.
Sigarreta, José M.
Villeta, María
description If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. We denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X):=\inf\{\delta\ge 0: X \text{ is }\delta\text{-hyperbolic}\}$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main aim of this paper is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of parameters of the graph $G$. In particular, we prove qualitative results as the following: a graph $G$ is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic; if $\{G_n\}$ is a T-decomposition of $G$ ($\{G_n\}$ are simple subgraphs of $G$), the line graph $\mathcal{L}(G)$ is hyperbolic if and only if $\sup_n \delta(\mathcal{L}(G_n))$ is finite. Besides, we obtain quantitative results. Two of them are quantitative versions of our qualitative results. We also prove that $g(G)/4 \le \delta(\mathcal{L}(G)) \le c(G)/4+2$, where $g(G)$ is the girth of $G$ and $c(G)$ is its circumference. We show that $\delta(\mathcal{L}(G)) \ge \sup \{L(g):\, g \,\text{ is an isometric cycle in }\,G\,\}/4$. Furthermore, we characterize the graphs $G$ with $\delta(\mathcal{L}(G)) < 1$.
doi_str_mv 10.37236/697
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-2a66f6b8cbc7a76c27f5006a992633b886a3977cdb088718ff3862776a80727e3</originalsourceid><addsrcrecordid>eNpNj7FOwzAURS1EJUrbf_DQkcCzTd-zRxRBWylSFzpHtrHVVG0S2V7y91TAwHTudK4OY0sBz4qkwhc0dMfmAogqbSTe_9sP7DHnM4CQxmzm7OnQ83IKfDeNIbnh0vmuTLwe-lxsX_gQedP1gW-THU95yWbRXnJY_XHBjh_vn_Wuag7bff3WVF68mlJJixjRae88WUIvKW4A0JrbvVJOa7TKEPkvB1qT0DEqjZIIrQaSFNSCrX-9Pg05pxDbMXVXm6ZWQPtT2N4K1Te53UBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Hyperbolicity Constant of Line Graphs</title><source>Freely Accessible Science Journals</source><creator>Carballosa, Walter ; Rodríguez, José M. ; Sigarreta, José M. ; Villeta, María</creator><creatorcontrib>Carballosa, Walter ; Rodríguez, José M. ; Sigarreta, José M. ; Villeta, María</creatorcontrib><description>If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. We denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X):=\inf\{\delta\ge 0: X \text{ is }\delta\text{-hyperbolic}\}$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main aim of this paper is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of parameters of the graph $G$. In particular, we prove qualitative results as the following: a graph $G$ is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic; if $\{G_n\}$ is a T-decomposition of $G$ ($\{G_n\}$ are simple subgraphs of $G$), the line graph $\mathcal{L}(G)$ is hyperbolic if and only if $\sup_n \delta(\mathcal{L}(G_n))$ is finite. Besides, we obtain quantitative results. Two of them are quantitative versions of our qualitative results. We also prove that $g(G)/4 \le \delta(\mathcal{L}(G)) \le c(G)/4+2$, where $g(G)$ is the girth of $G$ and $c(G)$ is its circumference. We show that $\delta(\mathcal{L}(G)) \ge \sup \{L(g):\, g \,\text{ is an isometric cycle in }\,G\,\}/4$. Furthermore, we characterize the graphs $G$ with $\delta(\mathcal{L}(G)) &lt; 1$.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/697</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2011-10, Vol.18 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c149t-2a66f6b8cbc7a76c27f5006a992633b886a3977cdb088718ff3862776a80727e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carballosa, Walter</creatorcontrib><creatorcontrib>Rodríguez, José M.</creatorcontrib><creatorcontrib>Sigarreta, José M.</creatorcontrib><creatorcontrib>Villeta, María</creatorcontrib><title>On the Hyperbolicity Constant of Line Graphs</title><title>The Electronic journal of combinatorics</title><description>If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. We denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X):=\inf\{\delta\ge 0: X \text{ is }\delta\text{-hyperbolic}\}$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main aim of this paper is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of parameters of the graph $G$. In particular, we prove qualitative results as the following: a graph $G$ is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic; if $\{G_n\}$ is a T-decomposition of $G$ ($\{G_n\}$ are simple subgraphs of $G$), the line graph $\mathcal{L}(G)$ is hyperbolic if and only if $\sup_n \delta(\mathcal{L}(G_n))$ is finite. Besides, we obtain quantitative results. Two of them are quantitative versions of our qualitative results. We also prove that $g(G)/4 \le \delta(\mathcal{L}(G)) \le c(G)/4+2$, where $g(G)$ is the girth of $G$ and $c(G)$ is its circumference. We show that $\delta(\mathcal{L}(G)) \ge \sup \{L(g):\, g \,\text{ is an isometric cycle in }\,G\,\}/4$. Furthermore, we characterize the graphs $G$ with $\delta(\mathcal{L}(G)) &lt; 1$.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNj7FOwzAURS1EJUrbf_DQkcCzTd-zRxRBWylSFzpHtrHVVG0S2V7y91TAwHTudK4OY0sBz4qkwhc0dMfmAogqbSTe_9sP7DHnM4CQxmzm7OnQ83IKfDeNIbnh0vmuTLwe-lxsX_gQedP1gW-THU95yWbRXnJY_XHBjh_vn_Wuag7bff3WVF68mlJJixjRae88WUIvKW4A0JrbvVJOa7TKEPkvB1qT0DEqjZIIrQaSFNSCrX-9Pg05pxDbMXVXm6ZWQPtT2N4K1Te53UBA</recordid><startdate>20111031</startdate><enddate>20111031</enddate><creator>Carballosa, Walter</creator><creator>Rodríguez, José M.</creator><creator>Sigarreta, José M.</creator><creator>Villeta, María</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111031</creationdate><title>On the Hyperbolicity Constant of Line Graphs</title><author>Carballosa, Walter ; Rodríguez, José M. ; Sigarreta, José M. ; Villeta, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-2a66f6b8cbc7a76c27f5006a992633b886a3977cdb088718ff3862776a80727e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carballosa, Walter</creatorcontrib><creatorcontrib>Rodríguez, José M.</creatorcontrib><creatorcontrib>Sigarreta, José M.</creatorcontrib><creatorcontrib>Villeta, María</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carballosa, Walter</au><au>Rodríguez, José M.</au><au>Sigarreta, José M.</au><au>Villeta, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Hyperbolicity Constant of Line Graphs</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2011-10-31</date><risdate>2011</risdate><volume>18</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>If X is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$-hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. We denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X):=\inf\{\delta\ge 0: X \text{ is }\delta\text{-hyperbolic}\}$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main aim of this paper is to obtain information about the hyperbolicity constant of the line graph $\mathcal{L}(G)$ in terms of parameters of the graph $G$. In particular, we prove qualitative results as the following: a graph $G$ is hyperbolic if and only if $\mathcal{L}(G)$ is hyperbolic; if $\{G_n\}$ is a T-decomposition of $G$ ($\{G_n\}$ are simple subgraphs of $G$), the line graph $\mathcal{L}(G)$ is hyperbolic if and only if $\sup_n \delta(\mathcal{L}(G_n))$ is finite. Besides, we obtain quantitative results. Two of them are quantitative versions of our qualitative results. We also prove that $g(G)/4 \le \delta(\mathcal{L}(G)) \le c(G)/4+2$, where $g(G)$ is the girth of $G$ and $c(G)$ is its circumference. We show that $\delta(\mathcal{L}(G)) \ge \sup \{L(g):\, g \,\text{ is an isometric cycle in }\,G\,\}/4$. Furthermore, we characterize the graphs $G$ with $\delta(\mathcal{L}(G)) &lt; 1$.</abstract><doi>10.37236/697</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2011-10, Vol.18 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_697
source Freely Accessible Science Journals
title On the Hyperbolicity Constant of Line Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Hyperbolicity%20Constant%20of%20Line%20Graphs&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Carballosa,%20Walter&rft.date=2011-10-31&rft.volume=18&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/697&rft_dat=%3Ccrossref%3E10_37236_697%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c149t-2a66f6b8cbc7a76c27f5006a992633b886a3977cdb088718ff3862776a80727e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true