Loading…
The Map Asymptotics Constant $t_g
The constant $t_g$ appears in the asymptotic formulas for a variety of rooted maps on the orientable surface of genus $g$. Heretofore, studying this constant has been difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps provides a much simpler recursion for $t_g$ that lead...
Saved in:
Published in: | The Electronic journal of combinatorics 2008-03, Vol.15 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c645-9d8cd5b56f9442a7671f8a620f652b2043a861bc7260d06299cce796552fd4c13 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 15 |
creator | Bender, Edward A. Gao, Zhicheng Richmond, L. Bruce |
description | The constant $t_g$ appears in the asymptotic formulas for a variety of rooted maps on the orientable surface of genus $g$. Heretofore, studying this constant has been difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps provides a much simpler recursion for $t_g$ that leads to estimates for its asymptotics. |
doi_str_mv | 10.37236/775 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645-9d8cd5b56f9442a7671f8a620f652b2043a861bc7260d06299cce796552fd4c13</originalsourceid><addsrcrecordid>eNpNj7FOwzAURS0EEqXlH4LUNfT52X4vHqsIaKUiluyW48TQqm2i2Ev_ngoYmM6dztURYiHhWTEqWjGbGzGTwFxWFun2374XDykdACRaa2biqfnqi3c_Fut0OY15yPuQino4p-zPuVhm97kQd9EfU__4x7loXl-aelPuPt629XpXBtKmtF0VOtMailZr9EwsY-UJIZLBFkErX5FsAyNBB3Q9D6FnS8Zg7HSQai6Wv9owDSlNfXTjtD_56eIkuJ8qd61S3wBzO6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Map Asymptotics Constant $t_g</title><source>Freely Accessible Journals</source><creator>Bender, Edward A. ; Gao, Zhicheng ; Richmond, L. Bruce</creator><creatorcontrib>Bender, Edward A. ; Gao, Zhicheng ; Richmond, L. Bruce</creatorcontrib><description>The constant $t_g$ appears in the asymptotic formulas for a variety of rooted maps on the orientable surface of genus $g$. Heretofore, studying this constant has been difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps provides a much simpler recursion for $t_g$ that leads to estimates for its asymptotics.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/775</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2008-03, Vol.15 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645-9d8cd5b56f9442a7671f8a620f652b2043a861bc7260d06299cce796552fd4c13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bender, Edward A.</creatorcontrib><creatorcontrib>Gao, Zhicheng</creatorcontrib><creatorcontrib>Richmond, L. Bruce</creatorcontrib><title>The Map Asymptotics Constant $t_g</title><title>The Electronic journal of combinatorics</title><description>The constant $t_g$ appears in the asymptotic formulas for a variety of rooted maps on the orientable surface of genus $g$. Heretofore, studying this constant has been difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps provides a much simpler recursion for $t_g$ that leads to estimates for its asymptotics.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNj7FOwzAURS0EEqXlH4LUNfT52X4vHqsIaKUiluyW48TQqm2i2Ev_ngoYmM6dztURYiHhWTEqWjGbGzGTwFxWFun2374XDykdACRaa2biqfnqi3c_Fut0OY15yPuQino4p-zPuVhm97kQd9EfU__4x7loXl-aelPuPt629XpXBtKmtF0VOtMailZr9EwsY-UJIZLBFkErX5FsAyNBB3Q9D6FnS8Zg7HSQai6Wv9owDSlNfXTjtD_56eIkuJ8qd61S3wBzO6c</recordid><startdate>20080327</startdate><enddate>20080327</enddate><creator>Bender, Edward A.</creator><creator>Gao, Zhicheng</creator><creator>Richmond, L. Bruce</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080327</creationdate><title>The Map Asymptotics Constant $t_g</title><author>Bender, Edward A. ; Gao, Zhicheng ; Richmond, L. Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645-9d8cd5b56f9442a7671f8a620f652b2043a861bc7260d06299cce796552fd4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bender, Edward A.</creatorcontrib><creatorcontrib>Gao, Zhicheng</creatorcontrib><creatorcontrib>Richmond, L. Bruce</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bender, Edward A.</au><au>Gao, Zhicheng</au><au>Richmond, L. Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Map Asymptotics Constant $t_g</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2008-03-27</date><risdate>2008</risdate><volume>15</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>The constant $t_g$ appears in the asymptotic formulas for a variety of rooted maps on the orientable surface of genus $g$. Heretofore, studying this constant has been difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps provides a much simpler recursion for $t_g$ that leads to estimates for its asymptotics.</abstract><doi>10.37236/775</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2008-03, Vol.15 (1) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_775 |
source | Freely Accessible Journals |
title | The Map Asymptotics Constant $t_g |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T21%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Map%20Asymptotics%20Constant%20$t_g&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Bender,%20Edward%20A.&rft.date=2008-03-27&rft.volume=15&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/775&rft_dat=%3Ccrossref%3E10_37236_775%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c645-9d8cd5b56f9442a7671f8a620f652b2043a861bc7260d06299cce796552fd4c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |