Loading…

Unique Rectification in $d$-Complete Posets: Towards the $K$-Theory of Kac-Moody Flag Varieties

The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) devel...

Full description

Saved in:
Bibliographic Details
Published in:The Electronic journal of combinatorics 2018-10, Vol.25 (4)
Main Authors: Ilango, Rahul, Pechenik, Oliver, Zlatin, Michael
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-8dc74fefbcf65d20e37a9be56800464c18a9e06c4d6cefa5651d236fc0d9f36d3
cites
container_end_page
container_issue 4
container_start_page
container_title The Electronic journal of combinatorics
container_volume 25
creator Ilango, Rahul
Pechenik, Oliver
Zlatin, Michael
description The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $K$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$d$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $d$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $K$-theoretic Schubert structure constants in the Kac-Moody setting.
doi_str_mv 10.37236/7903
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_7903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_7903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-8dc74fefbcf65d20e37a9be56800464c18a9e06c4d6cefa5651d236fc0d9f36d3</originalsourceid><addsrcrecordid>eNpNkLtOwzAYRi0EEqX0HTyE0eBL4sRsKKKAWgRCKWvk2r-pUVoX2wjl7bkOTOebjvQdhGaMnouaC3lRKyoO0ITRuiaN4vLw3z5GJym9Usq4UtUE9audf3sH_AQme-eNzj7ssN_hwhakDdv9ABnwY0iQ0yXuwoeONuG8AVwsCtJtIMQRB4cX2pD7EOyI54N-wc86esge0ik6cnpIMPvjFK3m1117S5YPN3ft1ZIYzlkmjTV16cCtjZOV5RRErdUaKtlQWsrSsEYroNKUVhpwupIVs19PnaFWOSGtmKKzX6-JIaUIrt9Hv9Vx7Bntf6r031XEJycpU4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unique Rectification in $d$-Complete Posets: Towards the $K$-Theory of Kac-Moody Flag Varieties</title><source>Freely Accessible Journals</source><creator>Ilango, Rahul ; Pechenik, Oliver ; Zlatin, Michael</creator><creatorcontrib>Ilango, Rahul ; Pechenik, Oliver ; Zlatin, Michael</creatorcontrib><description>The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $K$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$d$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $d$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $K$-theoretic Schubert structure constants in the Kac-Moody setting.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/7903</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2018-10, Vol.25 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-8dc74fefbcf65d20e37a9be56800464c18a9e06c4d6cefa5651d236fc0d9f36d3</citedby><orcidid>0000-0002-7090-2072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ilango, Rahul</creatorcontrib><creatorcontrib>Pechenik, Oliver</creatorcontrib><creatorcontrib>Zlatin, Michael</creatorcontrib><title>Unique Rectification in $d$-Complete Posets: Towards the $K$-Theory of Kac-Moody Flag Varieties</title><title>The Electronic journal of combinatorics</title><description>The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $K$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$d$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $d$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $K$-theoretic Schubert structure constants in the Kac-Moody setting.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAYRi0EEqX0HTyE0eBL4sRsKKKAWgRCKWvk2r-pUVoX2wjl7bkOTOebjvQdhGaMnouaC3lRKyoO0ITRuiaN4vLw3z5GJym9Usq4UtUE9audf3sH_AQme-eNzj7ssN_hwhakDdv9ABnwY0iQ0yXuwoeONuG8AVwsCtJtIMQRB4cX2pD7EOyI54N-wc86esge0ik6cnpIMPvjFK3m1117S5YPN3ft1ZIYzlkmjTV16cCtjZOV5RRErdUaKtlQWsrSsEYroNKUVhpwupIVs19PnaFWOSGtmKKzX6-JIaUIrt9Hv9Vx7Bntf6r031XEJycpU4U</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Ilango, Rahul</creator><creator>Pechenik, Oliver</creator><creator>Zlatin, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7090-2072</orcidid></search><sort><creationdate>20181019</creationdate><title>Unique Rectification in $d$-Complete Posets: Towards the $K$-Theory of Kac-Moody Flag Varieties</title><author>Ilango, Rahul ; Pechenik, Oliver ; Zlatin, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-8dc74fefbcf65d20e37a9be56800464c18a9e06c4d6cefa5651d236fc0d9f36d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilango, Rahul</creatorcontrib><creatorcontrib>Pechenik, Oliver</creatorcontrib><creatorcontrib>Zlatin, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilango, Rahul</au><au>Pechenik, Oliver</au><au>Zlatin, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique Rectification in $d$-Complete Posets: Towards the $K$-Theory of Kac-Moody Flag Varieties</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2018-10-19</date><risdate>2018</risdate><volume>25</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong (2009) for minuscule varieties has been extended in two orthogonal directions, either enriching the cohomology theory or else expanding the family of varieties considered. In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of 'unique rectification targets' in minuscule posets to extend the Thomas-Yong rule from ordinary cohomology to $K$-theory. Separately, P.-E. Chaput and N. Perrin (2012) used the combinatorics of R. Proctor's '$d$-complete posets' to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody structure constants. We begin to address the unification of these theories. Our main result is the existence of unique rectification targets in a large class of $d$-complete posets. From this result, we obtain conjectural positive combinatorial formulas for certain $K$-theoretic Schubert structure constants in the Kac-Moody setting.</abstract><doi>10.37236/7903</doi><orcidid>https://orcid.org/0000-0002-7090-2072</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2018-10, Vol.25 (4)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_7903
source Freely Accessible Journals
title Unique Rectification in $d$-Complete Posets: Towards the $K$-Theory of Kac-Moody Flag Varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20Rectification%20in%20$d$-Complete%20Posets:%20Towards%20the%20$K$-Theory%20of%20Kac-Moody%20Flag%20Varieties&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Ilango,%20Rahul&rft.date=2018-10-19&rft.volume=25&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/7903&rft_dat=%3Ccrossref%3E10_37236_7903%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-8dc74fefbcf65d20e37a9be56800464c18a9e06c4d6cefa5651d236fc0d9f36d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true