Loading…
Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India
Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential features from electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model...
Saved in:
Published in: | Iraqi journal for electrical and electronic engineering 2024-12, Vol.20 (2), p.207-219 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 219 |
container_issue | 2 |
container_start_page | 207 |
container_title | Iraqi journal for electrical and electronic engineering |
container_volume | 20 |
creator | Gochhait, Saikat K. Sharma, Deepak Bachute, Mrinal |
description | Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential features from electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integrates a feature extraction module, densely connected residual block (DCRB), long short-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decision making processes, making it a valuable tool for stakeholders in the electricity sector. |
doi_str_mv | 10.37917/ijeee.20.2.17 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37917_ijeee_20_2_17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37917_ijeee_20_2_17</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_37917_ijeee_20_2_173</originalsourceid><addsrcrecordid>eNqVz7FOwzAUQFELUYkIujK_H4ixnbaO2arQCiQ2uluW81JcJXbkZ5Dy96CKH2C60xkuY49S8EYbqZ_CBRG5ElxxqW9YpYRu653YmVtWyVZu6m1r1B1bE12EELLZSKNNxYYuTbPLroRvhPcUz_UJ8wSHEX3JwYeywDFl9I5KiGfYRzcuFOgZ9tA5QvgoX_0Cafi1roeXQLMr_hM6jCUjQYjwFvvgHthqcCPh-q_3jB8Pp-619jkRZRzsnMPk8mKlsNchex2ySlhlpW7-DX4AU-1U5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India</title><source>EZB Free E-Journals</source><creator>Gochhait, Saikat ; K. Sharma, Deepak ; Bachute, Mrinal</creator><creatorcontrib>Gochhait, Saikat ; K. Sharma, Deepak ; Bachute, Mrinal</creatorcontrib><description>Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential features from electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integrates a feature extraction module, densely connected residual block (DCRB), long short-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decision making processes, making it a valuable tool for stakeholders in the electricity sector.</description><identifier>ISSN: 1814-5892</identifier><identifier>EISSN: 2078-6069</identifier><identifier>DOI: 10.37917/ijeee.20.2.17</identifier><language>eng</language><ispartof>Iraqi journal for electrical and electronic engineering, 2024-12, Vol.20 (2), p.207-219</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Gochhait, Saikat</creatorcontrib><creatorcontrib>K. Sharma, Deepak</creatorcontrib><creatorcontrib>Bachute, Mrinal</creatorcontrib><title>Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India</title><title>Iraqi journal for electrical and electronic engineering</title><description>Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential features from electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integrates a feature extraction module, densely connected residual block (DCRB), long short-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decision making processes, making it a valuable tool for stakeholders in the electricity sector.</description><issn>1814-5892</issn><issn>2078-6069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVz7FOwzAUQFELUYkIujK_H4ixnbaO2arQCiQ2uluW81JcJXbkZ5Dy96CKH2C60xkuY49S8EYbqZ_CBRG5ElxxqW9YpYRu653YmVtWyVZu6m1r1B1bE12EELLZSKNNxYYuTbPLroRvhPcUz_UJ8wSHEX3JwYeywDFl9I5KiGfYRzcuFOgZ9tA5QvgoX_0Cafi1roeXQLMr_hM6jCUjQYjwFvvgHthqcCPh-q_3jB8Pp-619jkRZRzsnMPk8mKlsNchex2ySlhlpW7-DX4AU-1U5g</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Gochhait, Saikat</creator><creator>K. Sharma, Deepak</creator><creator>Bachute, Mrinal</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241215</creationdate><title>Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India</title><author>Gochhait, Saikat ; K. Sharma, Deepak ; Bachute, Mrinal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_37917_ijeee_20_2_173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gochhait, Saikat</creatorcontrib><creatorcontrib>K. Sharma, Deepak</creatorcontrib><creatorcontrib>Bachute, Mrinal</creatorcontrib><collection>CrossRef</collection><jtitle>Iraqi journal for electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gochhait, Saikat</au><au>K. Sharma, Deepak</au><au>Bachute, Mrinal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India</atitle><jtitle>Iraqi journal for electrical and electronic engineering</jtitle><date>2024-12-15</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>207</spage><epage>219</epage><pages>207-219</pages><issn>1814-5892</issn><eissn>2078-6069</eissn><abstract>Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential features from electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integrates a feature extraction module, densely connected residual block (DCRB), long short-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decision making processes, making it a valuable tool for stakeholders in the electricity sector.</abstract><doi>10.37917/ijeee.20.2.17</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1814-5892 |
ispartof | Iraqi journal for electrical and electronic engineering, 2024-12, Vol.20 (2), p.207-219 |
issn | 1814-5892 2078-6069 |
language | eng |
recordid | cdi_crossref_primary_10_37917_ijeee_20_2_17 |
source | EZB Free E-Journals |
title | Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Long-Term%20Electricity%20Forecasting%20Analysis:%20A%20Case%20Study%20of%20Load%20Dispatch%20Centres%20in%20India&rft.jtitle=Iraqi%20journal%20for%20electrical%20and%20electronic%20engineering&rft.au=Gochhait,%20Saikat&rft.date=2024-12-15&rft.volume=20&rft.issue=2&rft.spage=207&rft.epage=219&rft.pages=207-219&rft.issn=1814-5892&rft.eissn=2078-6069&rft_id=info:doi/10.37917/ijeee.20.2.17&rft_dat=%3Ccrossref%3E10_37917_ijeee_20_2_17%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-crossref_primary_10_37917_ijeee_20_2_173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |