Loading…
Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations
A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemann...
Saved in:
Published in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2024-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Symmetry, integrability and geometry, methods and applications |
container_volume | |
creator | Cortés, Vicente Leistner, Thomas |
description | A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat. |
doi_str_mv | 10.3842/SIGMA.2024.084 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3842_SIGMA_2024_084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3842_SIGMA_2024_084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-bdc6f4e7427b80a5b3ecaa637829725b21a4baa0922f47e95128fc7fabe79c643</originalsourceid><addsrcrecordid>eNpN0MFKwzAcx_EgCs7p1XNfoDVJ0yQ9jjLnsEPBeZTwT5qwStuMpCJ7H9_EF9NVQU__7-X_O3wQuiY4yyWjN0_r1WaRUUxZhiU7QTMiSZFiXpSn__ocXcT4ijHjjOMZeql8vwczJrU30HWHpPKD86Gf-jHat8an958fu86GZAND63zXxOS9HXfJMkY7jC10fz_JNsAQpx5bP8RLdOagi_bq987R8-1yW92l9cNqXS3q1BDOxlQ3hjtmBaNCSwyFzq0B4LmQtBS00JQA0wC4pNQxYcuCUOmMcKCtKA1n-RxlP7sm-BiDdWof2h7CQRGsjjhqwlFHHPWNk38BT-Fafg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</title><source>Publicly Available Content Database</source><creator>Cortés, Vicente ; Leistner, Thomas</creator><creatorcontrib>Cortés, Vicente ; Leistner, Thomas ; University of Hamburg, Germany ; University of Adelaide, Australia</creatorcontrib><description>A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2024.084</identifier><language>eng</language><ispartof>Symmetry, integrability and geometry, methods and applications, 2024-09</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Cortés, Vicente</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><creatorcontrib>University of Hamburg, Germany</creatorcontrib><creatorcontrib>University of Adelaide, Australia</creatorcontrib><title>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</title><title>Symmetry, integrability and geometry, methods and applications</title><description>A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0MFKwzAcx_EgCs7p1XNfoDVJ0yQ9jjLnsEPBeZTwT5qwStuMpCJ7H9_EF9NVQU__7-X_O3wQuiY4yyWjN0_r1WaRUUxZhiU7QTMiSZFiXpSn__ocXcT4ijHjjOMZeql8vwczJrU30HWHpPKD86Gf-jHat8an958fu86GZAND63zXxOS9HXfJMkY7jC10fz_JNsAQpx5bP8RLdOagi_bq987R8-1yW92l9cNqXS3q1BDOxlQ3hjtmBaNCSwyFzq0B4LmQtBS00JQA0wC4pNQxYcuCUOmMcKCtKA1n-RxlP7sm-BiDdWof2h7CQRGsjjhqwlFHHPWNk38BT-Fafg</recordid><startdate>20240921</startdate><enddate>20240921</enddate><creator>Cortés, Vicente</creator><creator>Leistner, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240921</creationdate><title>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</title><author>Cortés, Vicente ; Leistner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-bdc6f4e7427b80a5b3ecaa637829725b21a4baa0922f47e95128fc7fabe79c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés, Vicente</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><creatorcontrib>University of Hamburg, Germany</creatorcontrib><creatorcontrib>University of Adelaide, Australia</creatorcontrib><collection>CrossRef</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés, Vicente</au><au>Leistner, Thomas</au><aucorp>University of Hamburg, Germany</aucorp><aucorp>University of Adelaide, Australia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2024-09-21</date><risdate>2024</risdate><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.</abstract><doi>10.3842/SIGMA.2024.084</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | Symmetry, integrability and geometry, methods and applications, 2024-09 |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_crossref_primary_10_3842_SIGMA_2024_084 |
source | Publicly Available Content Database |
title | Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Locally%20Conformally%20Pseudo-K%C3%A4hler%20Manifolds%20with%20Essential%20Conformal%20Transformations&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Cort%C3%A9s,%20Vicente&rft.aucorp=University%20of%20Hamburg,%20Germany&rft.date=2024-09-21&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2024.084&rft_dat=%3Ccrossref%3E10_3842_SIGMA_2024_084%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c164t-bdc6f4e7427b80a5b3ecaa637829725b21a4baa0922f47e95128fc7fabe79c643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |