Loading…

Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations

A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemann...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2024-09
Main Authors: Cortés, Vicente, Leistner, Thomas
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Symmetry, integrability and geometry, methods and applications
container_volume
creator Cortés, Vicente
Leistner, Thomas
description A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.
doi_str_mv 10.3842/SIGMA.2024.084
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3842_SIGMA_2024_084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3842_SIGMA_2024_084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-bdc6f4e7427b80a5b3ecaa637829725b21a4baa0922f47e95128fc7fabe79c643</originalsourceid><addsrcrecordid>eNpN0MFKwzAcx_EgCs7p1XNfoDVJ0yQ9jjLnsEPBeZTwT5qwStuMpCJ7H9_EF9NVQU__7-X_O3wQuiY4yyWjN0_r1WaRUUxZhiU7QTMiSZFiXpSn__ocXcT4ijHjjOMZeql8vwczJrU30HWHpPKD86Gf-jHat8an958fu86GZAND63zXxOS9HXfJMkY7jC10fz_JNsAQpx5bP8RLdOagi_bq987R8-1yW92l9cNqXS3q1BDOxlQ3hjtmBaNCSwyFzq0B4LmQtBS00JQA0wC4pNQxYcuCUOmMcKCtKA1n-RxlP7sm-BiDdWof2h7CQRGsjjhqwlFHHPWNk38BT-Fafg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</title><source>Publicly Available Content Database</source><creator>Cortés, Vicente ; Leistner, Thomas</creator><creatorcontrib>Cortés, Vicente ; Leistner, Thomas ; University of Hamburg, Germany ; University of Adelaide, Australia</creatorcontrib><description>A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2024.084</identifier><language>eng</language><ispartof>Symmetry, integrability and geometry, methods and applications, 2024-09</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Cortés, Vicente</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><creatorcontrib>University of Hamburg, Germany</creatorcontrib><creatorcontrib>University of Adelaide, Australia</creatorcontrib><title>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</title><title>Symmetry, integrability and geometry, methods and applications</title><description>A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0MFKwzAcx_EgCs7p1XNfoDVJ0yQ9jjLnsEPBeZTwT5qwStuMpCJ7H9_EF9NVQU__7-X_O3wQuiY4yyWjN0_r1WaRUUxZhiU7QTMiSZFiXpSn__ocXcT4ijHjjOMZeql8vwczJrU30HWHpPKD86Gf-jHat8an958fu86GZAND63zXxOS9HXfJMkY7jC10fz_JNsAQpx5bP8RLdOagi_bq987R8-1yW92l9cNqXS3q1BDOxlQ3hjtmBaNCSwyFzq0B4LmQtBS00JQA0wC4pNQxYcuCUOmMcKCtKA1n-RxlP7sm-BiDdWof2h7CQRGsjjhqwlFHHPWNk38BT-Fafg</recordid><startdate>20240921</startdate><enddate>20240921</enddate><creator>Cortés, Vicente</creator><creator>Leistner, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240921</creationdate><title>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</title><author>Cortés, Vicente ; Leistner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-bdc6f4e7427b80a5b3ecaa637829725b21a4baa0922f47e95128fc7fabe79c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortés, Vicente</creatorcontrib><creatorcontrib>Leistner, Thomas</creatorcontrib><creatorcontrib>University of Hamburg, Germany</creatorcontrib><creatorcontrib>University of Adelaide, Australia</creatorcontrib><collection>CrossRef</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortés, Vicente</au><au>Leistner, Thomas</au><aucorp>University of Hamburg, Germany</aucorp><aucorp>University of Adelaide, Australia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2024-09-21</date><risdate>2024</risdate><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>A conformal transformation of a semi-Riemannian manifold is essential if there is no conformally equivalent metric for which it is an isometry. For Riemannian manifolds the existence of an essential conformal transformation forces the manifold to be conformally flat. This is false for pseudo-Riemannian manifolds, however compact examples of conformally curved manifolds with essential conformal transformation are scarce. Here we give examples of compact conformal manifolds in signature $(4n+2k,4n+2\ell)$ with essential conformal transformations that are locally conformally pseudo-Kähler and not conformally flat, where $n\ge 1$, $k, \ell \ge 0$. The corresponding local pseudo-Kähler metrics obtained by a local conformal rescaling are Ricci-flat.</abstract><doi>10.3842/SIGMA.2024.084</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1815-0659
ispartof Symmetry, integrability and geometry, methods and applications, 2024-09
issn 1815-0659
1815-0659
language eng
recordid cdi_crossref_primary_10_3842_SIGMA_2024_084
source Publicly Available Content Database
title Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Locally%20Conformally%20Pseudo-K%C3%A4hler%20Manifolds%20with%20Essential%20Conformal%20Transformations&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Cort%C3%A9s,%20Vicente&rft.aucorp=University%20of%20Hamburg,%20Germany&rft.date=2024-09-21&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2024.084&rft_dat=%3Ccrossref%3E10_3842_SIGMA_2024_084%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c164t-bdc6f4e7427b80a5b3ecaa637829725b21a4baa0922f47e95128fc7fabe79c643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true