Loading…
HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII
ABSTRACT We report on results from new high-sensitivity, high-resolution 86 GHz (3.5 mm) observations of the jet base in the nearby radio galaxy M87, obtained by the Very Long Baseline Array in conjunction with the Green Bank Telescope. The resulting image has a dynamic range exceeding 1500 to 1, th...
Saved in:
Published in: | The Astrophysical journal 2016-02, Vol.817 (2), p.131 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT We report on results from new high-sensitivity, high-resolution 86 GHz (3.5 mm) observations of the jet base in the nearby radio galaxy M87, obtained by the Very Long Baseline Array in conjunction with the Green Bank Telescope. The resulting image has a dynamic range exceeding 1500 to 1, the highest ever achieved for this jet at this frequency, resolving and imaging a detailed jet formation/collimation structure down to ∼10 Schwarzschild radii ( ). The obtained 86 GHz image clearly confirms some important jet features known at lower frequencies, i.e., a jet base with a wide opening angle, a limb-brightened intensity profile, a parabola-shape collimation profile and a counter jet. The limb-brightened structure is already well developed at mas ( , projected) from the core, where the corresponding apparent opening angle becomes as wide as ∼100°. The subsequent jet collimation near the black hole evolves in a complicated manner; there is a "constricted" structure at tens of from the core, where the jet cross section is locally shrinking. We suggest that external pressure support from the inner part of the radiatively inefficient accretion flow may be dynamically important in shaping/confining the footprint of the magnetized jet. We also present the first 86 GHz polarimetric experiment using very long baseline interferometry for this source, where a highly polarized (∼20%) feature is detected near the jet base, indicating the presence of a well-ordered magnetic field. As a by-product, we additionally report a 43/86 GHz polarimetric result for our calibrator 3C 273, suggesting an extreme rotation measure near the core. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/0004-637X/817/2/131 |