Loading…

AN ORDERED MAGNETIC FIELD IN THE PROTOPLANETARY DISK OF AB Aur REVEALED BY MID-INFRARED POLARIMETRY

ABSTRACT Magnetic fields (B-fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarizatio...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2016-11, Vol.832 (1), p.18
Main Authors: Li, Dan, Pantin, Eric, Telesco, Charles M., Zhang, Han, Wright, Christopher M., Barnes, Peter J., Packham, Chris, Mariñas, Naibí
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Magnetic fields (B-fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarization of the protoplanetary disk around the Herbig Ae star AB Aur. We detect ∼0.44% polarization at 10.3 m from AB Aur's inner disk (r < 80 au), rising to ∼1.4% at larger radii. Our simulations imply that the mid-infrared polarization of the inner disk arises from dichroic emission of elongated particles aligned in a disk B-field. The field is well ordered on a spatial scale, commensurate with our resolution (∼50 au), and we infer a poloidal shape tilted from the rotational axis of the disk. The disk of AB Aur is optically thick at 10.3 m, so polarimetry at this wavelength is probing the B-field near the disk surface. Our observations therefore confirm that this layer, favored by some theoretical studies for developing magneto-rotational instability and its resultant viscosity, is indeed very likely to be magnetized. At radii beyond ∼80 au, the mid-infrared polarization results primarily from scattering by dust grains with sizes up to ∼1 m, a size indicating both grain growth and, probably, turbulent lofting of the particles from the disk mid-plane.
ISSN:0004-637X
1538-4357
DOI:10.3847/0004-637X/832/1/18